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Abstract
Modern search engines use a two-stage architecture for efficient and high-quality search over large volumes of data. In 
the first stage, simple and fast algorithms like BM25 are applied, while in the second stage, more precise but resource-
intensive methods methods, such as deep neural networks, are employed. Although this approach yields good results, 
it is fundamentally limited in quality due to the vocabulary mismatch problem inherent in the simple algorithms of the 
first stage. To address this issue, we propose an algorithm for constructing an inverted index using vector representations 
combining the advantages of both stages: the efficiency of the inverted index and the high search quality of vector 
models. In our work, we suggest creating a vector index that preserves the various semantic meanings of vocabulary 
tokens. For each token, we identify the documents in which it is used, and then cluster its contextualized embeddings. The 
centroids of the resulting clusters represent different semantic meanings of the tokens. This process forms an extended 
vocabulary which is used to build the inverted index. During index construction, similarity scores between each semantic 
meaning of a token and documents are calculated which are then used in the search process. This approach reduces 
the number of computations required for similarity estimation in real-time. Searching the inverted index first requires 
finding keys in the vector index, helping to solve the vocabulary mismatch problem. The operation of the algorithm is 
demonstrated on a search task within the SciFact dataset. It is shown that the proposed method achieves high search 
quality with low memory requirements. The proposed algorithm demonstrates high search quality, while maintaining a 
compact vector index whose size remains constant and depends only on the size of the vocabulary. The main drawback 
of the algorithm is the need to use a deep neural network to generate vector representations of queries during the search 
process which slows down this stage. Finding ways to address this issue and accelerate the search process represents a 
direction for future research.
Keywords
inverted index, vocabulary mismatch problem, neural networks, vector representations, clusterization
For citation: Dobrynin V.Yu., Abramovich R.K., Platonov A.V. Efficient sparse retrieval through embedding-based 
inverted index construction. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2025, 
vol. 25, no. 1, pp. 61–67 doi: 10.17586/2226-1494-2025-25-1-61-67

УДК 004.89
Эффективный разреженный поиск с помощью построения  

инвертированного индекса на основе эмбеддингов
Вячеслав Юрьевич Добрынин1, Роман Константинович Абрамович2,  

Алексей Владимирович Платонов3 

1,2,3 Университет ИТМО, Санкт-Петербург, 197101, Российская Федерация 
1 Shift Lab LTD, Лондон, W3 7XS, Великобритания 
2 Payler Ltd, Лондон, E14 4QA, Великобритания
1 vidobrynin@itmo.ru, https://orcid.org/0009-0004-3056-8403 
2 asmetliness24237@gmail.com, https://orcid.org/0009-0005-5397-2772  
3 avplatonov@itmo.ru, https://orcid.org/0000-0002-8485-1296

http://ntv.ifmo.ru/
http://ntv.ifmo.ru/en/
http://V.Yu
mailto:vidobrynin@itmo.ru
https://orcid.org/0009-0004-3056-8403
mailto:asmetliness24237@gmail.com
https://orcid.org/0009-0005-5397-2772
mailto:avplatonov@itmo.ru
https://orcid.org/0000-0002-8485-1296
http://V.Yu
mailto:vidobrynin@itmo.ru
https://orcid.org/0009-0004-3056-8403
mailto:asmetliness24237@gmail.com
https://orcid.org/0009-0005-5397-2772
mailto:avplatonov@itmo.ru
https://orcid.org/0000-0002-8485-1296


Efficient sparse retrieval through embedding-based inverted index construction

Научно-технический вестник информационных технологий, механики и оптики, 2025, том 25, № 1 
62 Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2025, vol. 25, no 1

Аннотация
Введение. Современные поисковые системы используют двухэтапную архитектуру для эффективного и 
качественного поиска по большим объемам данных. На первом этапе применяются простые и быстрые 
алгоритмы, такие как BM25, а на втором — более точные, но ресурсоемкие методы, например глубокие 
нейронные сети. Несмотря на то, что такой подход показывает хорошие результаты, он фундаментально 
ограничен по качеству из-за проблемы несовпадения словарей, что присуще простым алгоритмам первого 
этапа. Метод. Для решения проблемы ограничений качества поиска, в настоящей работе предлагается алгоритм 
построения инвертированного индекса с использованием векторных представлений. Представленный подход 
объединяет преимущества обоих этапов: эффективность инвертированного индекса и высокое качество 
поиска при использовании векторных моделей. Предложено создание векторного индекса, сохраняющего 
различные семантические значения токенов словаря. Для каждого токена определяются документы, в которых 
он используется, после чего его контекстуализированные эмбеддинги кластеризуются. Центроиды полученных 
кластеров представляют различные семантические значения токенов. Таким образом, формируется расширенный 
словарь, который применяется для построения инвертированного индекса. При построении индекса вычисляются 
оценки близости между каждым семантическим значением токена и документами, что затем используется в 
процессе поиска. Это позволяет сократить количество вычислений для оценки близости в режиме реального 
времени. Поиск по инвертированному индексу требует нахождения ключей в векторном индексе, что позволяет 
решить проблему несовпадения словарей. Основные результаты. Работа алгоритма продемонстрирована на 
задаче поиска в наборе данных SciFact. Показано, что предлагаемый метод обеспечивает высокое качество 
поиска при низких требованиях к объему памяти. Обсуждение. Разработанный алгоритм демонстрирует 
высокое качество поиска, при этом он поддерживает компактный векторный индекс, размер которого остается 
неизменным и определяется исключительно размерами словаря. Основным недостатком алгоритма является 
необходимость использования глубокой нейронной сети для генерации векторных представлений запроса в 
процессе поиска, что замедляет этот этап. Поиск путей для решения данной проблемы и сокращения времени 
поиска представляет собой направление дальнейших исследований.
Ключевые слова
инвертированный индекс, проблема несоответствия словарей, нейронные сети, векторные представления, 
кластеризация
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Introduction

Modern search systems typically use a two-stage 
architecture to balance between speed and search quality 
while working with massive volumes of data such as the 
entire Internet. At the first stage, simple and fast algorithms 
are used to reduce the number of candidates to hundreds or 
thousands. At the second stage, these candidate documents 
are re-ranked using more complex models that provide 
high-quality results but require by an order of magnitude 
more processing power. Consequently, those models 
cannot be efficiently applied to the entire dataset due to 
performance constraints. However, this approach has 
limitations in search quality, as the algorithm at the first 
stage can miss relevant documents by not accounting for 
the semantics of the texts.

nd-to-end solutions, such as Contextualized Late 
Interaction over Bidirectional Encoder Representations 
from Transformers (BERT) (ColBERT), implement 
search using a single stage, allowing for significantly 
improved search quality. For example, Best Matching 
25 (BM25), which is often used as a first-stage ranking 
model, achieves a Mean Reciprocal Rank (MRR)@10 of 
19.5 on the Microsoft Machine Reading Comprehension 
(MS MARCO) dataset, whereas ColBERT (end-to-end) 
achieves an MRR@10 of 36.7 [1]. The main innovation in 
the ColBERT architecture is the late interaction mechanism 
which independently encodes query and document tokens 
into vector representations that are used for computing 
relevance scores. This approach allows us to independently 

pre-compute document embeddings at the offline stage and 
store them in a vector index for further retrieval. However, 
it also requires a significant amount of resources to store 
the indexed documents and process incoming queries, 
making it challenging to apply to large-scale datasets. 

To address this problem, we propose implementing a 
single-stage architecture algorithm that uses an inverted 
index as the primary structure for indexing and searching. 
However, unlike classical approaches like BM25, our 
method constructs an inverted index using deep neural 
networks, allowing for a more precise capture of the 
context of tokens and their relevance to the documents. 

In this paper, we present a new method that leverages 
the efficiency of an inverted index while maintaining the 
search quality of vector models. Our approach combines 
the advantages of inverted index structure with the scoring 
provided by deep learning models that deeply understand 
token semantics.

Related works

The Sparse Neural Ranking Model (SNRM), introduced 
by Zamani et al. in 2018 [2], was one of the first works 
that tried to integrate deep neural networks with traditional 
inverted indexing. By using sparsity constraints, SNRM is 
trained to generate high-dimensional sparse embeddings 
for both queries and documents, which can be later used 
to construct an inverted index. This model was able to 
significantly improve search quality, but, at the same time, 
it has certain limitations related to its architecture, such as 
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loss of token interpretability, fixed dimensionality of output 
vectors, and the need to process queries through the model 
which significantly increases computational resources at 
query time.

SparTerm, introduced by Bai et al. in 2020 [3], 
was designed to improve traditional sparse term-based 
representations by using deep models like BERT [4]. By 
generating dense contextualized embeddings that capture 
the semantics of each term and using a gating controller to 
sparsify the resulting vectors, SparTerm is able to construct 
an inverted index using original vocabulary terms. By doing 
so, SparTerm improves semantic matching in the inverted 
index, while keeping the interpretability and efficiency of 
classical methods.

The Sparse Lexical And Expansion (SPLADE) model 
by Formal et al. [5], builds upon SparTerm by simplifying 
its architecture. The main idea is that instead of using a 
gating controller to achieve sparsity, the authors would 
employ a log-saturation function and a sparsifying 
regularization at the training stage to induce sparsity in the 
output vectors, thus addressing one of the key limitations 
of SparTerm, allowing for end-to-end training and reducing 
computational complexity.

ColBERT [1] and ColBERTv2 [6] can be considered an 
alternative approach to generating sparse vectors, as instead 
of building an inverted index, it focuses on algorithmic 
optimizations to reduce computational resources required 
for search. In this work, the authors introduce the concept of 
“late interaction” which separates the encoding of queries 
and documents from computing relevance scores between 
them. By employing an Approximate Nearest Neighbor 
(ANN) index with the Facebook AI Similarity Search [7] 
library and vector compression techniques like Product 
Quantization [8], combined with offline indexing, ColBERT 
allows for significantly reducing resources required for 
storing and processing search queries. However, despite 
achieving high search quality and requiring significantly 
fewer resources than traditional vector search methods, 
ColBERT still requires more computational resources 
during query time and greater storage space for document 
embeddings than inverted index models.

The model SparseEmbed [9] was inspired by both 
SPLADE and ColBERT. By generating sparse vectors 
using the same approach as SPLADE and storing dense 
embeddings for each input token, SparseEmbed constructs 
an inverted index with original vocabulary terms, where 
the values stored in the index are the dense representations 
of the tokens. At search time, it uses dense embeddings of 
activated tokens to compute relevance scores efficiently. 
This approach improves context capture compared to 
SPLADE by using dense representations and is more 
efficient than ColBERT as it requires linear time relative 
to the number of activated terms rather than quadratic time. 
SparseEmbed achieved an MRR@10 score of 39.2 on the 
MS MARCO dataset, which is slightly the score of 39.7 
achieved by ColBERTv2. However, it still requires storing 
dense vectors for each token and document and computing 
contextualized embeddings at query time, increasing the 
computational resources needed during search.

The work Sparse Transformer Matching (SPARTA) [10] 
offers an efficient neural ranking method that addresses 

the limitations of dense vector search in open-domain 
question answering. Unlike similar models that rely 
entirely on dense embeddings, SPARTA learns sparse 
representations that can be implemented as an inverted 
index, allowing for scalable retrieval without the need 
for expensive ANN search. SPARTA captures fine-
grained relevance information by focusing on token-level 
interactions between queries and documents, allowing 
for high-quality matching while maintaining efficiency. 
This approach significantly improves retrieval performance 
compared to dense models and achieves state-of-the-art 
results across multiple open-domain question answering 
tasks .

This paper is a continuation of the algorithm proposed 
in [11]. The main improvement is in the way we select 
contextualized embeddings from documents. Instead of 
computing context based on a sliding window algorithm 
as in our earlier approach, we now utilize contextualized 
vector representations of tokens within the entire document. 
This change allows us to perform more effective clustering 
and capture different semantic meanings of words. By 
constructing an inverted index using these embeddings, 
we address the resource-intensive computations required 
during search, achieving efficiency comparable to 
traditional methods while capturing the semantic richness 
highlighted in models like SPARTA and SPLADE.

In the next sections we describe the whole algorithm 
with the new upgrades.

Description of the Proposed Algorithm

The usage of transformer models allows for 
significantly improved search quality due to their ability 
to capture complex semantic relationships between tokens 
in the text. However, these models also require substantial 
computational resources, making them far less practical to 
use directly in large-scale search systems.

In contrast, the usage of inverted indexes is a standard 
practice in modern production search systems due to their 
scalability, high performance, and relatively low memory 
usage.

Inverted indexes are able to efficiently retrieve 
documents based on exact query term matching, however, 
when queries and documents use different words with 
similar meanings, traditional inverted indexes fail 
to retrieve relevant documents, which is known as the 
vocabulary mismatch problem.

To address this problem, we propose a novel method 
of inverted index construction, where the index terms are 
selected based on their semantic similarity, rather than 
exact term matching. By doing so, we aim to resolve the 
vocabulary mismatch problem by incorporating semantic 
understanding into the index building process.

Our method involves training a compact vector index 
that contains embeddings representing different semantic 
meanings for each token in the vocabulary. To generate 
these embeddings, we cluster the contextualized token 
embeddings across all documents in the dataset. This 
allows us to capture the various contexts in which a token 
appears, effectively representing its multiple semantic 
meanings.

http://V.Yu
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Index construction
As search systems face the requirement to work with 

massive data volumes, the efficient implementation of the 
indexing stage is a crucial concern. Caching is one of the 
most common optimization techniques to speed up data 
processing, and the one that we adopted to optimize our 
indexing algorithm.

As we build both a compact vector index and an 
inverted index using vector representations extracted from 
documents, it is a logical step to cache those representations 
for both processes. Our vector representations are obtained 
using a deep neural network based on the transformer 
architecture. More specifically, it is a bidirectional 
encoder that considers each token context by looking at 
both preceding and following tokens. This allows for a 
deeper semantic understanding of words depending on 
their context, which is a critical factor for calculating the 
relevance score between tokens and documents.

The result of this preparation stage is a collection 
that contains mappings of document identifiers to their 
corresponding contextualized embeddings, represented as 
pairs (doc_id, contextualized_embs), which is later used for 
obtaining semantic clusters for tokens, building a vector 
index and an inverted index.

The index construction is divided into two main stages: 
first, we use vector representations and clustering to build 
an expanded vocabulary that captures different semantic 
contexts of tokens, and second, we use this expanded 
vocabulary to construct the inverted index.

The core idea of the proposed approach is to construct 
a fixed Hierarchical Navigable Small World (HNSW) [12] 
index that contains vector representations of all vocabulary 
tokens in their various semantic contexts across indexed 
documents. This index allows us to efficiently distinct 
different token contexts at both indexing and query time. 
Since a token can have multiple meanings depending on its 
usage, capturing these variations is essential for semantic 
search.

The first step is quite similar to building a classical 
inverted index. For each token, we collect and store all the 
document ids in which this token appears, ending up with a 
map of token id to the list of document ids. This collection 
will later be used to gather contextualized embeddings for 
each token across different contexts.

Then, for each token in the map, the following steps 
are performed:
1. Collect Contextualized Embeddings from all the 

documents that the token appears in. As the token might 
have different semantic meanings based on the context, 
by collecting token embeddings from all documents we 
make sure to account for all of them. At this step, we 
use the (doc_id, contextualized_embs) map prepared at 
the preparation step to speed up the process and avoid 
re-calculating embeddings for each document over and 
over.

2. Clustering: As soon as we have all token embeddings 
from each document it appears in, we perform 
clustering on these embeddings using the k-means++ 
algorithm [13]. As a result, we get a small set of cluster 
centroids that group similar embeddings and represent 
different semantic meanings that this token has.

3. Store semantic centroids: Finally, we store the 
resulting centroids to the HNSW index, where they can 
be later used for building an inverted index. With each 
centroid, we also store the associated metadata required 
for further steps: a source token and a unique cluster 
identifier (token_id, cluster_id).
This process is depicted in Fig. 1.
The constructed HNSW index enables efficient nearest 

neighbor search based on semantic similarity during both 
indexing and query processing. By using those centroids 
to build an inverted index we address the vocabulary 
mismatch problem and allow for a search based on 
semantics and thus more agile, but still interpretable as we 
save corresponding token and cluster identifiers with each 
embedding in both vector and inverted index.

At this step, we combine the results from all the 
previous steps in order to construct the inverted index.

To do so, we iterate over the collection of document ids 
mapped to their contextualized embeddings generated at the 
preparation step. For each contextualized  token embedding 
e in the document, we search for its nearest semantic 
centroids from the HNSW index built at the previous step.

The relevance score between contextualized 
embeddings of a document and retrieved semantic centroids 
is calculated using the MaxSim operator as defined in [1]. 
Thus, in our work, most of the computations of the “late 
interaction” mechanism are performed at the indexing 
stage, which speeds up the search process compared to 
ColBERT. Finally, these relevance scores are then stored in 
the inverted index along with the document ids, where the 
keys are represented as pairs of token and cluster identifiers 
(token_id, cluster_id).

The whole inverted index construction process is 
presented in Fig. 2.

This algorithm allows us to effectively expand the 
vocabulary of the inverted index based on a deep semantic 
understanding of the source texts. The vocabulary mismatch 
problem is addressed by searching for nearest semantic 
clusters for each token, allowing for including semantic 
clusters from different tokens to the resulting posting list 
even if they do not appear in the document. The inverted 
index remains efficient and interpretable, as it still relies on 
tokens from the original vocabulary augmented with cluster 
identifiers representing different semantic meanings.

Fig. 1. Vector index construction process
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Search process
The search process begins by encoding the query 

with the same encoder used at the indexing stage (e.g., a 
pretrained transformer model like BERT). Then, for each 
contextualized embedding of the query tokens, we use 
a vector index to search for the nearest neighbor tokens. 
These nearest tokens represent the semantic variations of 
the query tokens captured during the clustering step.

The retrieved tokens and cluster ids are then used to 
look up the list of documents and their associated scores 
from the inverted index. These scores represent the 
relevance between the document and the semantic cluster 
of the token.

To compute the overall relevance score for each 
document, we aggregate the scores from all matching 
tokens by summing them:

 scorequery,doc = Σtoken∈queryΣcluster_idscoretoken:cluster_id,doc,

where scoretoken:cluster_id,doc is the relevance score between 
the document and the specific semantic variation of the 
token.

Finally, we sort the documents in descending order 
based on their aggregated scores. This results in a ranked 
list of documents ordered by their relevance to the query. 
This method leverages the semantic understanding captured 
during the indexing process, allowing for effective retrieval 
even when there is a vocabulary mismatch between the 
query and the documents.

The search process is presented in Fig. 3.

Evaluation of the Proposed Algorithm

To train our model, we performed a k-means clustering 
on 300,000 documents from the widely-used ranking 
dataset MS MARCO [14] passages. The evaluation was 
done using the Benchmarking Information Retrieval (BIER) 
framework [15] which provides a variety of datasets and 
metrics for assessing the quality of search systems. As a 
dataset for rapid quality validation, we selected the SciFact 
dataset containing approximately 5,000 documents.

The BIER framework provides several standard 
metrics that can be used to evaluate search quality, such as 
Normalized Discounted Cumulative Gain (NDCG), Mean 
Average Precision, MRR, Precision and Recall, etc. To 
assess our model, we’ve primarily focused on NDCG and 
MRR metrics which are commonly used to measure the 
ranking quality of retrieval systems.

As the dense model that would convert our documents 
into contextualized embeddings, we used the sentence-
transformers/all-MiniLM-L6-v2, which is a highly efficient 
transformer model optimized for semantic search. However, 
while this model balances between speed and embedding 
quality, it has a considerable limitation, as the maximum 
input sequence length is restricted to 256 tokens.

We chose the HNSW algorithm for vector search due to 
its high search quality and low search latency in comparison 
to other approximate algorithms. However, while HNSW 
requires considerable memory resources, this does not limit 
our algorithm since the index size depends on the number of 
terms in the vocabulary rather than the number of documents 
in the corpus, which keeps memory usage optimal.

For comparison, we considered the SPARTA, HNSW, 
and ColBERTv2 algorithms. The results of the comparison 
are shown in Table.

The results of our study demonstrate that our model 
achieves higher search quality compared to SPARTA 

Fig. 2. Inverted index construction process

Fig. 3. Search process for a given query

Table. Retrieval results on SciFact dataset

Algorithm
Metrics

NDCG@10 MRR@10

SPARTA 0.60 0.57
Our work 0.63 0.60
HNSW 0.64 0.60
ColBERTv2 0.69 0.66
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(conceptually similar algorithm), provides comparable 
quality to HNSW (one of the best algorithms for ANN 
search), and falls behind ColBERT (state-of-the-art in 
search quality). However, due to the use of an inverted 
index, our model requires less memory than both HNSW 
and ColBERT, as illustrated in Fig. 4.

In the figure above, only the size of the inverted index 
for our algorithm is shown. The size of our vector index 
is constant and, therefore, not included in the calculation.

Discussion of Results

Vector index size
Although our approach requires a separate HNSW 

index, the way we construct it makes our algorithm more 
efficient than those of ColBERT and SparseEmbed. In 
ColBERT, the number of vectors that need to be stored 
increases linearly with the number of documents in the 
dataset, as a separate embedding must be saved for each 
new document, reducing scalability for large datasets. 
SparseEmbed further exacerbates this issue by storing 
embeddings of each token within the document as a value 
in the inverted index, thus requiring to store dozens of 
embeddings per document.

In contrast, the size of our vector index does not depend 
directly on the size of the dataset. We store embeddings 
of different contextual clusters of tokens within our 
vocabulary. Therefore, the dataset size affects the index 
size only indirectly: as more documents are added, new 
contextual meanings of tokens may appear, potentially 
increasing the number of clusters. This means that for 
small datasets consisting of a few thousand documents, 
our approach might require more memory than ColBERT 
as we would store at least one embedding for each token 

in the vocabulary. However, as the dataset size grows, 
the storage requirements for ColBERT and SparseEmbed 
increase linearly, while in our approach the size of the 
vector index stabilizes and remains constant as soon as new 
documents cease to introduce new semantic meanings to 
existing clusters.

Moreover, as our vector index stores semantic clusters 
for each token in the vocabulary, as long as our vocabulary 
does not change, we can train this vector index once and 
then reuse it in further iterations of indexing and searching 
processes.

Query-processing overhead
A major limitation of our algorithm is the requirement 

to process each query through a BERT-like model to 
obtain the vector representations of its tokens which are 
subsequently used to retrieve semantically similar clusters 
from the HNSW index. This step is computationally 
expensive and might significantly increase the query-
time latency. In future iterations of the algorithm, we 
intend to explore strategies to eliminate this costly model 
invocation to enhance the efficiency of our model. In the 
current version, it is still possible to perform search queries 
using only the inverted index, though it affects the search 
quality.

Conclusion

In this work, we proposed a novel algorithm for inverted 
index construction, designed to adapt deep neural models 
for usage with an efficient data structure widely adopted 
in production information retrieval systems. By utilizing 
contextualized vector representations, our approach can 
effectively address the vocabulary mismatch problem 
between documents and queries, leading to significant 
search quality improvements.

A key feature of our algorithm is the construction of a 
compact vector index used for capturing different semantic 
meanings of vocabulary tokens. The resulting index has 
a relatively small size which does not linearly depend on 
the amount of data in the search system, but rather on the 
size of the vocabulary, which is a major advantage of our 
algorithm. Additionally, by utilizing the MaxSim operator 
during the indexing process, we reduce the computational 
load of the search process compared to ColBERT while 
maintaining the advantages of the “late interaction” 
mechanism in terms of search quality.

Experimental results show the effectiveness of our 
approach, achieving strong search quality, which confirms 
its potential applicability to real-world information retrieval 
tasks.

Fig. 4. Index size growth with increasing documents
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