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Abstract

In the ever changing digital world, the rise of sophisticated cyber threats, especially DoS and DDoS attacks, is a big
challenge to Information Security. This paper addresses the problem of classifying malicious from benign network
traffic using CatBoost classifier, a machine learning algorithm optimized for categorical data and imbalanced datasets.
We used CIC-IDS2017 and CSE-CIC-IDS2018 datasets which simulate various cyberattack scenarios, our research
optimized CatBoost to identify specific subtypes of DoS and DDoS attacks including Hulk, SlowHTTPTest, GoldenEye,
Slowloris, HOIC, LOIC-UDP-HTTP, LOIT. The methodology involved data preparation, feature selection and model
configuration, normalizing outliers, correcting negative values, and refining dataset structures. Stratified sampling
ensured a balanced representation of classes in training, validation, and testing sets. The CatBoost model performed well
with overall accuracy of 0.999922, high precision, recall, and F1-scores across all categories, and it can process over
3.4 million samples per second. These results show the model is robust and reliable for real-time intrusion detection.
By classifying specific attack types, our model improves the precision of the Intrusion Detection Systems (IDS) and
allows for targeted response to different threats. The big gain in detection accuracy solves the problem of imbalanced
datasets and the need for granular attack types detection. Use CatBoost in advanced Information Security frameworks
for critical infrastructure, cloud services, and enterprise networks to defend against digital threats. This paper provides
a fast, accurate and scalable solution for network IDS and shows the importance of custom machine learning models
in Information Security. Future work should explore CatBoost on more datasets and integrate it with other machine
learning techniques to improve robustness and detection.

Keywords
information security, network intrusion detection, DoS attacks, DDoS attacks, machine learning, real-time detection,
feature selection, model optimization

For citation: Hajjouz A., Avksentieva E.Yu. Enhancing and extending CatBoost for accurate detection and classification
of DoS and DDoS attack subtypes in network traffic. Scientific and Technical Journal of Information Technologies,
Mechanics and Optics, 2025, vol. 25, no. 1, pp. 114-127. doi: 10.17586/2226-1494-2025-25-1-114-127

VJIK 004.492.3
Vayuumenue u pacmupenune CatBoost 17151 TOuHOr0 00HapyKeHUsI
U Ki1accupuxkanuu noarunos DoS n DDoS arak B cereBoM Tpaduke
Aonyaxagep Xaxokys!™, Enena IOpbeBna ABKceHTheBa2

1.2 Vausepcurer UTMO, Cankr-IletepOypr, 197101, Poccuiickas deneparust

! hajjouz@itmo.ru™?, https://orcid.org/0000-0002-8256-6790
2 eavksenteva@itmo.ru, https://orcid.org/0000-0001-5000-4868

AHHOTANMSA

B mocTosiHHO MEeHSIoIeMest IM(POBOM MUPE POCT CIOKHBIX KHOEpYTrpo3, ocobeHHo arak DoS (oTka3 B 00CTyKUBaHHH)
n DDoS (pacnpeneneHHbIi 0TKa3 B 00CTy)KHBaHHM), IPECTABISIET COO0H cephe3HyIo podieMy Ut HH(OPMAIMOHHON
OesomacHocTH. B paboTe paccmarpuBaeTcs 3a1a4a KiacCU(pUKaNK BPEOHOCHOTO U O€30I1aCHOTO CeTeBOro Tpaduka ¢
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A. Hajjouz, E.-Yu. Avksentieva

UCIIOJIb30BaHKHEM NpUMeHeHHeM Kiaccugukaropa CatBoost — anroputma MammHHOTO 00y4eHUsI, ONTHMHU3UPOBAHHOTO
JUTSL KATETOPUATBHBIX JAaHHBIX U HeCcOaTaHCHPOBAHHBIX HAOOPOB MaHHBIX. Vcmonb3oBanbl Habopbl maHHBIX CIC-
IDS2017 u CSE-CIC-IDS2018, koTopble UMUTHPYIOT pa3InyHbIe CLIEHAPHN KHOEepaTak. ONTUMU3AIMS KIIacCU(pHUKATOpa
CatBoost 1 pacio3HaBaHUs KOHKpETHBIX ToaTHIIOB atak DoS u DDoS, Bkirouas Hulk, SlowHTTPTest, GoldenEye,
Slowloris, HOIC, LOIC-UDP-HTTP, LOIT. Pa3paborana meroauka padotsl CatBoost 11 MOArOTOBKH JaHHEIX, 0TOOpa
TIPU3HAKOB U HACTPOWKHU MOJISITH, HOPMAJIM3AIHY BEIOPOCOB, KOPPEKTHPOBKH OTPHIATEIIBHBIX 3HAUCHUH U YITyqIISHHS
CTPYKTYpbI Ha00opoB paHHBIX. CTpaTuuurpoBaHHas BEIOOpKA oOecmedria cOalaHCHPOBAaHHOE NPEICTaBICHUE
KJIaCCOB B 00y4ArOIIMX, BAIMAAIIMOHHBIX M TECTOBBIX Habopax. Pazpaborannas moznens CatBoost mponemoHcTprpoBaa
OTJIMYHBIE pe3yNbTathl ¢ 001Ieit TouHOCTBIO 0,999922, BEICOKOH MONHOTOIT 1 3HaYeHHsIMHU F 1-Mephbl 10 BCeM KaTeropusM
U CIIoCOOHOCTBIO 00pabarsiBaTh Gosiee 3,4 MIIH 00pa3lloB B CEKYHAY. DTH Pe3y/bTaThl OKA3bIBAIOT, YTO MOJEIb
SBIISAETCS HAZEKHON U TMOAXOAUT /I 0OHApyKeHHsl BTOPKEHHI B peanbHOM BpeMeHH. Knaccuukarys KOHKPETHBIX
THUIIOB aTaK YJIy4IlaeT TOYHOCTh CHCTEMBI 0OHapykeHHs Bropxenuit (Intrusion Detection Systems, IDS) u mo3Bomser
IeJeHaNpaBIeHHO PearnpoBaTh Ha pa3dudHbIe yrpo3bl. CylecTBEHHOE IMOBBIIIEHNE TOYHOCTH OOHApPYKeHUS
pemraer npobneMy HecOaTaHCHPOBAHHBIX HAOOPOB JAHHBIX M HEOOXOJMMOCTE JICTEKTHPOBAHMS Pa3JIMUHBIX TUIIOB
arak. CatBoost pexoMeHIyeTCsl K HCHOIb30BAaHHUIO B IIEPEIOBBIX paMKaX MH()OPMAIMOHHONW 0€301acHOCTH IS
KPUTHYECKOH MHPPACTPYKTYPHI, O0JaYHBIX CEPBUCOB M KOPHMOPATHBHBIX CETEeH JUIS 3aIIUTHI OT HU(PPOBEIX yrpo3.
Jlannas paborta mpemiaraet ObICTPOE, TOYHOE U MacmTabupyemoe penieHue ais ceteBoit IDS u momuepkuBaet
Ba>XXHOCTBb MCIIOJIb30BaHNA KACTOMHU3UPOBAHHBIX MOﬂeJ’leﬁ MAaIIuHHOTO O6y'—[eHI/I$( B I/IH(I)OpMal_IHOHHOﬁ 0e30MacHOCTH.
B nanbheiimem mpeanonaraercs u3yuuTs npumenenne CatBoost Ha Gonbinem KonuuecTBe HAOOPOB JAHHBIX U €T0
MHTETPAIMIO C APYTIMH METOIaMU MAITMHHOTO 0Oy4eHHMs IS TOBBIIMIEHNST YCTOHYHMBOCTH U TOYHOCTH OOHAPYKEHHS.

KiroueBsbie ciioBa
nHpOpMaMOHHAsE 0€30MaCHOCTh, 00HAPY)KEHHE CETEBBIX BTOpKEeHHUH, ataku DoS, araku DDoS, MammaHOE 00y4eHue,
o0Hapy»KeHUE B pealbHOM BPEMEHH, OTOOD IPU3HAKOB, ONTUMHU3ALIHS MOJICIIH

Ccepuika 1Ja nuutupoBanus: Xaxky3 A., ABkcentseBa E.1O. Ynyumenne n pacmmperne CatBoost s TO9HOTO
obHapyxeHus u knaccudukanuu nmoaTunos DoS u DDoS atak B cereBoM Tpaduke // Hayuno-rexHmaeckuit
BECTHHK MH()OPMAIMOHHBIX TEXHOJIOTHH, MexaHuku u ontuku. 2025. T. 25, Ne 1. C. 114-127 (na annt. =3.). doi:
10.17586/2226-1494-2025-25-1-114-127

Introduction

In today’s connected world DoS (Denial of Service)
and DDoS (Distributed Denial of Service) attacks are a big
threat to information security [1-5]. The frequency and
complexity of these attacks are increasing, and it’s hard to
differentiate between malicious and normal traffic. This is
further complicated by data imbalance where normal traffic
is much more than attack instances, making it difficult to
detect and requiring robust solutions [1, 6, 7].

Research has proposed approaches using machine
learning and deep learning. To summarize the recent
approaches, Table 1 below is a comparison of various
studies, including the datasets used, the methodologies
applied, key findings, and the challenges faced.

The table uses three popular datasets to test network
intrusion detection systems. KDD CUP from 1999 is a
well known benchmark dataset to develop and compare
intrusion detection models. CSE-CIC-IDS from 2018 is
more recent and larger dataset of network attacks. CIS-IDS
is an additional dataset for research purpose in intrusion
detection. These datasets are used to evaluate and validate
different intrusion detection methods.

While many significant ones have made a lot of
progress in combating DDoS attacks in recent years,
existing methods fail because of imbalanced network
traffic datasets and the difficulty in processing categorical
data [1]. In various research and review papers, there’s
a lot of focus on a general approach to detect DoS and
DDoS attacks rather than classifying specific types of

Table 1. Comparison of approaches in literature review

References Dataset Used Approach

Key Findings Challenges

(8]

KDD CUP 1999,
CSE-CIC-IDS2018

CNN with image-
based (RGB and
grayscale)

CNN outperformed RNN in DoS
detection; better performance on
simpler datasets like KDD compared
to CSE-CIC-IDS2018

Lower performance on complex
datasets; requires careful tuning
of hyperparameters (image type,
kernel size, number of layers)

(9]

CIC-IDS2017

CNN, LSTM

Shows potential in intrusion detection
using deep learning

Real-time deployment challenges

[10]

CIC-IDS2017

Agent-based

automatic feature extraction and
selection, High accuracy achieved

High computational resource
utilization

[11] CIC-IDS2017 XGBoost Effective for DoS/DDoS detection Limited detection range, real-time
detectability
[12] CIC-IDS2017 Deep Belief Network | Deep learning shows promise in | Imbalanced datasets, categorical

cyber threat detection

data handling

NOTE. CNN — Convolutional Neural Network, LSTM — Long Short-Term Memory
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attacks. This general approach misses the nuances and
details of DoS and DDoS, hindering the development
of countermeasures. According to Cloudflare’s Q3 2024
report!, DDoS attacks were up 49 % from last quarter with
almost 6 million attacks, financial services was the most
targeted and China was the most affected region. Geore’s
H1 2024 report? showed 46 % increase in DDoS attacks
compared to 2023, with 445,000 attacks in Q2 alone and
the largest attack was 1.7 terabits per second. StormWall’s
analysis showed 102 % year-over-year increase in DDoS
incidents, 29 % of which were targeted at government
infrastructure — a 116 % increase in this sector —
mostly due to election-related motives3. So we need more
sophisticated detection and mitigation for these threats.

In our previous work [1], we optimized the CatBoost
classifier for DoS and DDoS attack detection in network
traffic and got significant improvements in detection
accuracy and performance. However that work was
general attack classification without considering different
attack subtypes. Since each subtype of DoS and DDoS
attacks exploits different vulnerabilities and requires
different mitigation strategies [13—20], we realized the
need to extend our work. To address these limitations and
improve the effectiveness of intrusion detection systems,
this paper builds upon our previous work [1] by introducing
an improved methodology that uses the strengths of the
CatBoost classifier to detect and classify specific attack
subtypes — Hulk, SlowHTTPTest, GoldenEye, Slowloris
(DoS) and HOIC, LOIC-UDP-HTTP, LOIT (DDoS). While
most of the existing research is focused on general DoS
and DDoS attack detection without considering specific
subtypes, our approach addresses this gap by using the
varied and extensive scenarios in CIC-IDS2017 and CSE-
CIC-IDS2018 datasets [21, 22] to enhance the accuracy
and performance of intrusion detection systems so they can
respond to specific threats better. The code for this work is
available on GitHub?.

Detecting these subtypes is important because different
attack subtypes require different mitigation strategies. For
example, the Slowloris attack [13, 14], which targets web
servers by keeping connections open, requires different
defenses than the Hulk attack [15] which floods the
network with a high volume of requests. Similarly the
SlowHTTPTest attack> which sends incomplete HTTP
requests to exhaust server resources requires different
mitigation than the GoldenEye attack [16] which also
floods the server with HTTP requests but in a different
pattern. The High Orbit Ion Cannon (HOIC) attack® which
floods the network with high volume HTTP requests

I Available at: https://radar.cloudflare.com/reports/ddos-
2024-q3 (accessed: 10.10.2024).

2 Available at: https://gcore.com/blog/radar-q1-q2-2024-
insights (accessed: 14.10.2024).

3 Available at: https://stormwall.network/ddos-report-h1-2024
(accessed: 12.10.2024).

4 Available at: https:/github.com/abdulkaderhajjouz/DDoS-
DoS-Attack-Detection (accessed: 12.11.2024).

5 Available at: https://github.com/shekyan/slowhttptest (ac-
cessed: 01.03.2024).

6 Available at: https://sourceforge.net/projects/
highorbitioncannon/ (accessed: 05.03.2024).

requires rate limiting and IP blocking whereas the Low
Orbit lon Cannon (LOIC) attacks [17] which can use both
UDP (User Datagram Protocol) and HTTP floods requires
different filtering rules for each protocol. Moreover the
LOIT (Low Orbit Ion Torrent) attack [18] which uses
different methods to overwhelm network resources requires
advanced traffic analysis and dynamic defense mechanisms
to counter its multi-faceted attack vectors.

By tuning the CatBoost classifier to detect these specific
attack types, our model allows intrusion detection systems
to respond to specific threats more effectively. Initial results
show a big improvement in detection accuracy setting a
new benchmark for real-time intrusion detection. This
paper describes our full methodology from data analysis
and feature selection to model tuning and evaluation. We
have made a big progress in dealing with imbalanced and
complex datasets of cyber threats. Our results provide
a scalable, accurate, and efficient way to strengthen
Information Security against evolving digital threats, the
demand for which is critical and growing.

Overview of DoS and DDoS attack subtypes
in the dataset

We used the CIC-IDS2017 and CSE-CIC-IDS2018
datasets created by the Canadian Institute for Information
Security and the Communications Security Establishment
(CSE). These datasets simulate different cyberattack
scenarios and have benign and malicious network traffic
to develop strong intrusion detection systems [1].

CIC-IDS2017 is a one week simulation of different
attacks like DoS and DDoS attacks. CSE-CIC-IDS2018 has
more advanced Cyber threats with more kinds of attacks
and also has 79 features of different aspects of network
traffic’, so we can classify each kind of network activity
more in detail [1, 19, 20].

This will help us to distinguish between malicious and
benign traffic. Table 2 shows the instance counts for each
class in the datasets.

Table 2. Distribution of Instances by Attack Type in CIC-
IDS2017 and CSE-CIC-IDS2018

Number of Instances
Class CIC-IDS2017 +

+ CSE-CIC-IDS2018
Benign 9,713,988
DoS attacks-Hulk 692,985
DDoS attack-HOIC 686,012
DDoS attack-LOIC-UDP-HTTP 577,921
DoS attacks-SlowHTTPTest 145,389
DDdoS LOIT 128,027
DoS attacks-GoldenEye 51,801
DoS attacks-Slowloris 16,786

7 Canadian Institute for Cybersecurity. A Realistic Cyber
Defense Dataset (CSE-CIC-IDS2018). 2018. Retrieved from
https://registry.opendata.aws/cse-cic-ids2018/
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These datasets and features we use to build a strong and
effective intrusion detection model capable of identifying
specific network anomalies, thus enhancing cybersecurity.

Data cleaning and processing for selected attack
subtypes

To get more accurate results from our intrusion
detection, we added a data preparation process to ensure
data integrity and addressed three key issues: first, we
normalized outliers [21] to prevent extreme values from
skewing the analysis and preserve the core data for
modeling; second, we corrected negative values [22]
and averaged them to keep consistency and differentiate
between good and bad network behavior; third, we
restructured the dataset to keep everything organized and
formatted for proper classification of network activities.
These are important for better detection and to make our
intrusion detection more reliable and trustworthy [1].

Feature engineering for specific attack subtypes

When it comes to cyber intrusion detection, feature
selection is key point [23]. The model can be more accurate,
faster, and more interpretable when we identify the right
features [24, 25]. There are several steps of careful filtering
to narrow down the dataset to the best features. This
filtering reduces the computational load and simplifies the
model and makes it more robust and interpretable [26, 27].

Following the methodology in [1] we refined the dataset by
removing non-contributory attributes, eliminating constant
features, examining feature relationships, visualizing and
clustering features and finally consolidating clusters to
select the most informative ones. The final 32 features
selected are shown in Table 3.

After applying these steps, we provide the Spearman
Correlation Heatmap for the final set of features illustrating
their relationships. However, due to the complexity and
detail of the heatmap, it has been made available as a
supplementary resource!.

Diagonal cells are perfect self-correlation with 1, off
diagonal cells are correlation between different features. No
strong correlation (near 1 or —1) means redundant features
have been removed. Most are moderate or weak so each
feature gives unique and independent information, makes
computation more efficient, and reduces overfitting in the
model [28].

Stratified sampling of DoS/DDoS subtypes

In our study involving extensive analysis, we have
employed stratified sampling to partition the overall dataset
into three subsets, namely, train (80 %), validation (10 %),

I Hajjouz Abdulkader, Avksentieva Elena. Spearman
Correlation Heatmaps After Feature Selection // Mendeley Data.
2024. V1. https://data.mendeley.com/datasets/hxd7gmrvth/1, doi:
10.17632/hxd7gmrvth.1

Table 3. List of Selected Features

Selected Features

Description

Selected Features

Description

dst_port

Destination port receiving the data

Protocol

Protocol used (e.g., TCP, UDP)

fwd iat min

Minimum inter-arrival time for forward
packets

bwd iat min

Minimum inter-arrival time for backward
packets

flow_duration

Total duration of the flow/session

fwd_psh_flags

Number of PUSH flags in forward direction

fin_flag cnt

Count of FIN flags in the flow

bwd pkts s

Backward packets per second

tot_bwd_pkts

Total packets forwarded from destination
to source

tot_fwd pkts

Total packets forwarded from source to
destination

totlen fwd pkts Total length of all forward packets rst_flag cnt Count of RST flags in the flow
totlen_bwd_pkts Total length of all backward packets active_std Standard deviation of active state duration
urg_flag cnt Count of URG flags in the flow ack flag cnt Count of ACK flags in the flow

fwd_pkt len std

Standard deviation of forward packet
length

fwd pkt len_mean

Mean packet length in the forward direction

bwd pkt len_mean

Mean packet length in the backward
direction

down_up ratio

Ratio of download to upload bytes

bwd pkt len std

Standard deviation of backward packet
length

init fwd_win_byts

Initial TCP window size in the forward
direction

flow_byts s

Bytes per second in the flow

flow pkts s

Packets per second in the flow

init bwd_win_byts

Initial TCP window size in the backward
direction

fwd_seg_size min

Minimum size of segments in the forward
direction

flow iat std

Standard deviation of inter-arrival times
between packets

active_mean

Mean duration of active state of the flow

flow_iat min Minimum inter-arrival time between | fwd iat tot Total inter-arrival time for forward packets
packets
psh_flag cnt Count of PUSH flags in the flow idle_mean Mean duration of idle state of the flow
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Table 4. Network Traffic Class Distribution Across Training, Validation, and Testing Sets

Class Set
Train Validation Test
Benign 777,119 971,399 971,399
DoS attacks-Hulk 554,388 69,299 69,298
DDoS attack-HOIC 548,809 68,602 68,601
DDoS attack-LOIC-UDP-HTTP 462,337 57,792 57,792
DoS attacks-SlowHTTPTest 116,311 14,539 14,539
DDoS LOIT 102,422 12,802 12,803
DoS attacks-GoldenEye 41,441 5,180 5,180
DoS attacks-Slowloris 13,429 1,678 1,679

and test (10 %), which are denoted in Table 4. We selected
this sampling approach in order to maintain the same
proportional ratios in these data subsets [1], as stratified
sampling contains a component of balanced allocation:

n = (N X N/N,

where 1 represents the sample size allocated to each class
k within a given subset, N is the total number of samples
in that subset, N, indicates the total number of samples for
class k across the dataset, and N,,, is the total number of
samples in the dataset.

Stratified sampling was used to ensure each class is
represented proportionally across the training, validation,
and test sets. This is important for our study as it allows
the model to be trained and tested on data that reflects
the overall class distribution [29], including less common
attack subtypes like DoS Slowloris and DDoS LOIT. By
keeping the class distribution consistent, we avoid bias
towards majority classes and don’t introduce artificial noise
by oversampling or undersampling. This also allows for
more accurate metrics like precision, recall, and F1-score
for each attack subtype [30].

Understanding CatBoost

CatBoost is a library based on Gradient Boosting
specifically designed to work with categorical and complex
data [31], so it’s perfect for applications that require
high accuracy and speed, like cyber threat detection and
imbalanced data classification. It uses “Ordered Boosting”
which trains trees in a specific order to prevent overfitting
and reduce bias [32]. CatBoost also uses “Ordered
Statistics” to process categorical data directly without
need for traditional complex encoding, so it reduces
computational cost and preserves data accuracy [33, 34].

CatBoost training process starts by processing
categorical features with ordered statistics, then applies
ordered boosting in multiple stages of “weak learners”.
Class weights are adjusted at cach stage to handle
imbalanced data. At each step errors from previous
stage are corrected and finally the “strong learner” is
produced which gives the final prediction. This structure
gives high accuracy and speed so CatBoost is perfect for
applications that require top performance and speed in data
analysis [32-34].

CatBoost outperforms other gradient boosting libraries
like XGBoost and LightGBM in terms of prediction
quality and speed, and also has native support for both
numerical and categorical features [32]. It also has built-
in visualization tools to understand model performance
and interpret results, fast training with multiple
GPUs and distributed training via Apache Spark and
Command-Line Interface which makes training fast and
reproducible [33, 34]. Although it requires significant
resources for large and complex datasets, experiments have
shown that CatBoost outperforms others across different
data types [33], so it’s the best choice for classifying DoS
and DDoS attack subtypes in this research.

Model configuration, training, and validation

When we are doing machine learning for cybersecurity,
especially for network intrusion detection, the model
configuration and training are everything [1]. We chose to
use the CatBoostClassifier, a decision tree based ensemble
model, because it performs well with categorical data and
imbalanced datasets, which is important for detecting
specific attack subtypes [33—-35].

We assigned specific class weights to each attack type
to address the data imbalance in our dataset. The weights
for each class were calculated using:

Weight for each class = (Total number of samples) /
(Number of samples in the class).

For example, the weights were: {‘Benign’: 1.2367,
‘DDoS LOIT’: 93.8307, ‘DDoS attack-HOIC’: 17.5112,
‘DDoS attack-LOIC-UDP-HTTP’: 20.7864, ‘DoS attacks-
GoldenEye’: 231.9038, ‘DoS attacks-Hulk’: 17.3350, ‘DoS
attacks-SlowHTTPTest’: 82.6261, ‘DoS attacks-Slowloris’:
715.6398}. These were set using the class weights
parameter in the CatBoost algorithm which gives more
importance to the less frequent classes, not increasing the
overall accuracy of the model but making it more sensitive
to the rare and critical attacks. Results showed that using
class_weights reduced the number of instances where
attacks were misclassified as “Benign” (false negatives)
and thus made the model more able to detect rare attack
patterns. This is important in cybersecurity where reducing
false negatives is key to responding to critical threats [35].

The key parameters for the model were: 1330 iterations
to balance learning and computation, 0.1 learning rate to
prevent overfitting, 6 depths to capture the complex patterns,
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MultiClass loss function for multi-class classification,
trained on a GPU with random seed 42 for reproducibility.
Other parameters were: L2 leaf regularization of 4 to balance
accuracy and speed; border count of 512 to balance speed
and accuracy; early stopping rounds of 250 to prevent
overfitting by stopping training when no improvement
was seen. Total F1-score was used as the evaluation
metric suitable for imbalanced data and gives a balanced
measure of the model ability to detect each attack subtype.

During training, the model was evaluated on a separate
validation set with early stopping based on Total F1-score
to prevent overfitting and get the best performance. In
this way we could monitor the model ability to detect
each subtype across iterations and make sure no subtype
is compromised. Our hyperparameter tuning showed that
CatBoost can handle complex imbalanced data. The best
Total F1-score was 0.99979 at iteration 835, so the model
is very good at detecting the subtypes in our dataset.

By using stratified sampling and fine tuning the model
we built an intrusion detection model that can detect
multiple types of network intrusions. We focused on
specific DoS and DDoS attack subtypes, so the model can
detect more specific and give tailored response to each type
of attack. Our results show that model configuration and
training matter in Information Security.

Result analysis and discussion

Confusion matrices are used to measure the performance
of machine learning algorithms [36] for network intrusion
detection systems. Matrices are important to measure
system classification skill for types of network activity,
such as Benign traffic, DoS attacks-Hulk, DdoS attacks-
HOIC, DdoS attacks-LOIC-UDP-HTTP, DoS attacks-
SlowHTTPTest, DdoS LOIT, DoS attacks-GoldenEye,
DoS attacks-Slowloris showed as in Fig. 1.

Using the confusion matrix as in Fig. 1 we get important
metrics to evaluate each class in our network intrusion
detection [1]:

Accuracy = ((TP+TN) / (TP + FP+ FN + TN))x100 %
Precision = TP/ (FP + TP)
Recall =TP/ (FN + TP)
Fl-score =2 x (Precision x Recall) / (Precision + Recall)
FAR = FP/(FP + TN)

— Accuracy: This is the percentage of true cases (true
positives and true negatives) out of total cases.
Accuracy doesn’t give more info but just tells us how
often the model is right.

— Precision: Precision is true positives out of total positive
predictions made by the model. Precision tells us how
well the model is in distinguishing useful positives from
non-informative false positives.

— Recall: Also known as sensitivity, Recall shows how
well the model finds all actual positives, i.e., how many
true positives out of all actual positives which means
how well the model did in finding the presence of a
positive.

— Fl-score: Fl-score is the average of Precision and
Recall. F1-score is good for overall model, especially
when class distribution is not equal.

— False Alarm Rate (FAR): FAR measures how often the
system generates false alerts when there is no threat.
Lower FAR means the system is better in avoiding false
positives and filtering out false alerts.

The CatBoost classifier performance on the test set is
impressive with an overall accuracy of 0.999922. It can
clearly differentiate between benign traffic, DDoS and DoS
attacks as shown by high precision, recall, and F1-scores
across all categories. As we can see from Table 5, the model
has near perfect F1-scores 0.999955 for Benign traffic,
0.999688 for DdoS LOIT and 0.999978 for DdoS attack-
HOIC and many others. This shows that the model is robust
and reliable in classifying different types of network traffic,
a great tool to enhance Information Security. This is very
important in imbalanced classes where the consequences
of false prediction are big. The support column in Table 5
indicates the number of actual instances for each class in
the test data, which helps provide context for the precision,
recall, and F1-scores calculated for each category. The high
scores across all attack types means minimal false positives
and false negatives, the model is useful in maintaining
strong Information Security defenses.

Fig. 2, a, shows the Receiver Operating Characteristic
(ROC) Curve and Fig. 2, b, shows the Precision-Recall
curve for the CatBoost model which is for multi-class
classification of benign, DDoS, DoS traffic in a network
intrusion detection system. The ROC Curve shows macro-
average Area Under the Curve (AUC) of 1.00 which means
the model is performing ideally and also means AUC

Table 5. Performance metrics of CatBoost classifier on test data

Class Precision Recall F1-score Support
Benign 0.999999 0.999911 0.999955 971,399
DDOS LOIT 0.999454 0.999922 0.999688 12,803
DDOS attack-HOIC 0.999956 1.000000 0.999978 68,601
DDOS attack-LOIC-UDP-HTTP 0.999792 1.000000 0.999896 57,792
DoS attacks-GoldenEye 0.997688 0.999807 0.998747 5,180
DoS attacks-Hulk 0.999423 0.999971 0.999697 69,298
DoS attacks-SlowHTTPTest 0.999656 0.999862 0.999759 14,539
DoS attacks-Slowloris 0.991721 0.998809 0.995252 1,679

NOTE: Overall Accuracy — 0.999922, False Alarm Rate — 0.000374.
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Fig. 1. Confusion Matrix of Predictions by CatBoost classifier on test set

values of the model across all traffic types. The model is
balanced as verified by the Precision-Recall curves, shown
in Fig. 2, b, which demonstrates almost ideal Average

Precision (AP), indicating excellent precision and recall
scores for class classification. All results show the model
capabilities and stability in identifying multiple types of
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Table 6. Matthews correlation coefficient scores for CatBoost

classifier
Class MCC
Benign 0.999766
DoS attacks-Hulk 0.999684
DDoS attack-HOIC 0.999977
DDoS attack-LOIC-UDP-HTTP 0.999891
DosS attacks-SlowHTTPTest 0.998742
DDoS LOIT 0.999679
DoS attacks-GoldenEye 0.999756
DoS attacks-Slowloris 0.995252

network intrusion and it can be used to advance some
aspects of Information Security.

The Matthews Correlation Coefficient (MCC) scores
in Table 6 show our classifier is doing great in multi-class
classification of Benign, DDoS and DoS traffic. MCC is
very useful in imbalanced datasets [37] and our model
scores are high, which means precision and correlation
between predicted and actual labels is good. This defines
how reliable and accurate our model is and can be deployed
in real world network intrusion detection.

We looked at our results and found the top parameters
to the model. The top parameters are flow_iat min
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(Minimum Flow Interarrival Time), fwd seg size min
(Minimum Forward Segment Size), and fwd_pkt len_mean
(Mean Forward Packet Length) as they contributed the
most to network intrusion prediction. Fig. 3 represents
feature importance and displays the ranking of features
based on their overall impact on the model. The SHAP
(SHapley Additive exPlanations) value summary allows
us to see the effect of a parameter on the model predictions
across all classes. The SHAP values show the importance of
parameters on the classes of interest, for example, dst_port,
fwd_seg_size min, and init_fwd win_byts (Initial Forward
Window Bytes) have high SHAP values across multiple
classes in Fig. 4.

SHAP value and feature importance show us the
important features and how much they contribute to the
model, so we can see how the model is making decisions and
how reliable it is for network intrusion detection [38—40].

Fig. 5 shows the CatBoost classifier performance on our
dataset, classifying network traffic into Benign, DoS (Hulk,
SlowHTTPTest, GoldenEye, Slowloris) and DDoS (HOIC,
LOIC-UDP-HTTP, LOIT) categories. Using a dataset of
12,012,909 samples, the classifier ran 100 iterations on
hardware with an RTX 3080 GPU, Intel Core i7 13700k
CPU, and 32 GB of DDRS RAM [1], with an average of
3,408,673.13 samples per second. The consistent speed
across iterations shows the classifier is stable and works
well for real-time intrusion detection systems.
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Fig. 3. Feature importance for analyzing feature impact
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Table 7. Accuracy and performance metrics over 10-fold cross-validation

Fold Accuracy Precision Recall F1-score ROC AUC
1 0.994072 0.994826 0.994072 0.994283 0.999915
2 0.992342 0.993351 0.992342 0.99262 0.999929
3 0.989641 0.991059 0.989641 0.990012 0.999912
4 0.994425 0.995107 0.994425 0.994621 0.999938
5 0.995427 0.996099 0.995427 0.995633 0.999974
6 0.996599 0.99703 0.996599 0.996726 0.999989
7 0.995264 0.99594 0.995264 0.995468 0.999963
8 0.994993 0.995512 0.994993 0.995139 0.999949
9 0.998675 0.998701 0.998675 0.998681 0.999999
10 0.989773 0.991204 0.989773 0.990149 0.999884

The cross-validation results [41, 42] for the CatBoost
model in Table 7 show good performance across 10 folds.
The model gets near perfect scores for all metrics, accuracy,
precision, recall, and F1-score. However there are some
small variations in some folds, especially in accuracy and
recall where it dips below 0.99 in folds 3 and 10. This
might be due to not applying stratified sampling during
cross-validation which can lead to imbalanced distribution
of attack and normal instances across the folds. But the
ROC AUC scores are consistently close to 1.0, which
shows the model is very good at discrimination. These
results show the robustness and reliability of the CatBoost
classifier for network intrusion detection.

We used CatBoost on combined CIC-IDS2017 and
CSE-CIC-IDS2018 datasets and got very good results in
network intrusion detection. Unlike previous methods
which only identified benign, DoS, and DDoS traffic
without identifying subtypes, our model can identify these
variations. With a very low False Alarm Rate of 0.000374
it reduced false positives. As shown in Fig. 6, other models
like DBN, SVM, RF and XGBoost [8—12] performed good
results but none of them performed overall precision and
reliability of CatBoost.

We also re-divided the data into 70 % for training, 15 %
for validation, and 15 % for testing. The results remained
stable and consistent with previous outcomes, even without
using class weights, although there was a slight increase
in the number of attacks misclassified as “Benign”. This
confirms that our model configuration is robust and
effective without signs of overfitting.

These results show CatBoost is ready for real-world
Information Security use cases. Consistency across all
metrics means our model and approach is working.
CatBoost is effective in various network intrusion detection
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