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Abstract

When studying human vessels using the contour interpolation method, there is a problem of insufficient data for
training neural networks for automatic segmentation of the carotid artery wall. In this paper, automated methods of
contour interpolation are proposed to expand the datasets, which allows for improved segmentation of vessel walls
and atherosclerotic plaques. In this study, the performance of various interpolation methods is compared with the
traditional nearest neighboring technique. A theoretical description and comparative evaluation of Linear, Polar, and
Spline interpolation are presented. Quantitative metrics, including the Dice Similarity Coefficient, area and index
differences, and normalized Hausdorff distances, are used to evaluate the performance of the methods. Performance
evaluations are performed on various vessel morphologies for both the lumen and the outer wall boundaries. The
study showed that Linear interpolation achieves better geometric performance (Cohen’s Kappa 0.92) and improved
neural network performance (Score 0.86) compared to the State-of-the-Art model. The proposed interpolation methods
consistently outperform nearest neighbor interpolation. Polar and spline methods are effective in generating anatomically
plausible contours with improved smoothness and continuity, eliminating transition artifacts between slices. Statistical
analysis confirmed good agreement and reduced variation of these methods. The results of the study are useful for the
development of automated tools for assessing atherosclerotic plaque in carotid arteries, which is important for stroke
prevention. Implementation of improved interpolation methods into clinical imaging workflows can significantly improve
the reliability, accuracy, and clinical utility of vessel wall segmentation.
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Deep learning-enhanced contour interpolation techniques for 3D carotid vessel wall segmentation
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AHHOTALUA

Beenenue. [Ipu nccienoBanny COCyI0B 4e0OBEKa METOOM HHTEPIIOJSIIIN KOHTYPOB BO3HUKACT IIpoOIeMa He[OCTaTKa
JTAHHBIX ULt 00ydeHNs] HSHPOHHBIX CeTel C IIeIbI0 aBTOMAaTHUSCKON CerMEeHTAIlH CTeHKN COHHOIT apTepun. B padore
TIPE/IOXKEHBI aBTOMaTH3UPOBAHHBIE METO/IbI HHTEPIIOJSILIMY KOHTYPOB ISl PACIINPEHHsT HAOOPOB TaHHBIX, YTO TI03BOJISIET
YIAYYIIUTh CErMEHTAIMI0 CTEHOK COCY/IOB M aTepOCKICPOTHYECKUX OisimieKk. B mpencraBieHHOM HCCleTOBaHUU
orieHUBaeTCsA 3Q(HEKTUBHOCTh PA3IUMUHBIX METOAOB WHTEPIOJSIIMU B CPABHCHUHU C TPATUIIMOHHON TEXHHKOM
onmmxaiimero cocena. Meroasbl. IIpencraBieHsl TeopeTHUECKOe ONMUCAHUE M CPABHUTENIbHAS OLICHKA JIMHEHHOM,
TIOJSIPHOM M CTITaiH-UHTEPHIONANUH. [l OLEHKH MPOU3BOAUTEILHOCTH METOJOB HCIONIB30BAHBI KOTNIECTBEHHBIE
METPHKH, BKIIoUas kodpuuueHt cxoacrra Jaiica, pa3nuuns B IIOMAAH U HHICKCE, a TAK)KE HOPMATH30BAHHBIC
paccrosuus Xaycaopga. OneHKH TPON3BOAUTEIFHOCTH BEIIOIHEHBI HA PA3IMYHBIX MOP(OIOTUAX COCYIOB KaK JUIs
NIPOCBETA, TaK M JJIsI BHEIIHUX IpaHuI cTeHOK. OCHOBHBIE pe3yabTaThl. VccienoBanue 1mokasano, 9To JIMHEHHas
HMHTEPIIOJISIIHS IOCTHTaeT JIydIInX reoMerpudecknx rnokasaresnei (Kamma Kosna 0,92) u ynydmennoit agpdexruBHOCTH
HelipoHHOM cetu (oueHka 0,86) o cpaBHEHHIO ¢ IepefoBoi Mozaelbto. IIpeniokeHHbIe METOAB HHTEPIOISIIUY
CTaOMIIbHO TIPEBOCXOIAIT MHTEPIIOSILIHIO OirKaiiiero cocena. [losspHble U crmaiH-MeToib! 3G (GEKTHBHBI IIPH CO3AAHNH
AHATOMHYECKH MPABJONOAOOHBIX KOHTYPOB € YIIYYIICHHON MIaJKOCTBIO H HENIPEPBIBHOCTBIO, YCTPAHSIOT apTe(haKTh
nepexoia Mexmy cpe3amu. CTaTHCTHYIECKHI aHAIN3 TOATBEP/IHI XOPOIIYI0 CONTACOBAHHOCTD 1 YMEHBIIICHNE BapUALIN
9TuX MeTon0B. Ofcy:k1eHHe. Pe3ynbTaTs! HCCIeI0BaHNUS TTONE3HBI TSI pa3paboTKH aBTOMaTH3UPOBAHHBIX HHCTPYMEHTOB
OIIEHKH aTepOCKICPOTHIECKUX OJISMICK B COHHBIX apTEpPHsIX, YTO BAKHO Ul MPO(MUIAKTHKK HHCYIbTa. BHenpeHue
YITyHIIEHHBIX METOJIOB MHTEPIIOJIIIMY B KIIMHIYECKHE pabodue MpoIecChl BU3yaIn3alii MOXKET 3HAIUTENILHO ITOBBICUTE
HAJIeXKHOCTb, TOYHOCTb U KIIMHUYECKYIO [I0JIE3HOCTh CETMEHTAIIUU CTEHOK COCYJIOB.

Kirouesblie ciioBa

COHHBIE apTePHH, CETMEHTANNS CTEHKH, HHTEPIIOJSIIHS KOHTYpa, ITyOokoe o0yueHune, OIISIIKY, aTepOoCKIepO3 COHHO
apTepuu
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Introduction

Methods of Carotid Stenosis Imaging

Atherosclerosis is a leading cause of cardiovascular
diseases, with plaque being built up within the arterial
walls. The serious outcomes of this include stroke, heart
attack, and peripheral artery disease. Of the various regions
that are affected, carotid atherosclerosis refers to hardening
and narrowing of carotid arteries, with a very high risk from
its potential to cause ischemic strokes. The carotid arteries
are the vessels through which oxygenated blood reaches
the brain. Over time, plaques along their inner walls can

reduce or block blood flow. In worse conditions, plaques
may break off and cause strokes. The prevalence of carotid
atherosclerosis is high, especially in aging populations and
individuals with comorbid conditions, such as hypertension,
diabetes, and hyperlipidemia.

Detection and evaluation of the severity of carotid
atherosclerosis can prevent catastrophic cardiovascular
events. Traditionally, carotid ultrasound represented the
first-line imaging modality for such studies, while Magnetic
Resonance Imaging (MRI) represented a second-level
method for the study of carotid stenosis [1]. However,
in recent years, several 3D black-blood MR sequences
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with high isotropic resolution, high signal-to-noise ratio,
and large coverage have been developed [2, 3]. Among
them, 3D-VISTA (Volume Isotropic Turbo Spin Echo
Acquisition) method allows large coverage of carotid
arteries with submillimeter isotropic resolution in the
coronal acquisition, and can depict atherosclerotic lesion
burden, severity, and luminal stenosis. This technique
enables submillimeter isotropic resolution, allowing
comprehensive visualization of the lumen and outer wall.
However, challenges remain, including the complexity of
3D image review, large datasets, and the need for extensive
training of radiologists to interpret vessel wall thickness
accurately. These limitations underscore the importance
of developing automated tools for segmentation and
measurement of above-mentioned 3D-VISTA images.

Deep learning has emerged as a revolutionary
technology in medical imaging. According to [4],
Convolutional Neural Networks (CNNs) outperform
traditional methods in a range of image segmentation
tasks. Carotid atherosclerosis, requiring precise
segmentation of the carotid artery, benefits greatly from
these advancements. Accurate segmentation is critical for
assessing plaque burden, measuring lumen diameter, and
determining stenosis. Fig. 1 illustrates the segmentation
process, highlighting lumen and arterial wall separation
for measurements.

Due to the high potential of 3D-VISTA approach, a
specialized Vessel Wall Segmentation Challenge 2022
was dedicated to it. Its primary task was to segment the
carotid vessel wall from 3D-VISTA images, enabling
clinically relevant measurements, such as wall thickness,
lumen area, and stenosis percentage. Our work builds on
these objectives by addressing the interpolation of missing
annotations and enhancing the segmentation pipeline for
robust and clinically applicable results.

Related Works

Several segmentations schemes have been developed
over the years to increase accuracy. A semi-automatic

-

ECA: external
carotid artery

\— ICA: internal
carotid artery

) Bifurcation slice

technique was developed in [5], who introduced an inner
pathfinding algorithm with active contours without edges.
This approach optimized the image-dependent force to
detect the walls of the carotid artery, yielding highly
accurate results with a Dice coefficient of 0.949. Another
semi-automated methods utilized algorithms such as graph
cuts and watershed [6]. However, these methods require
significant user involvement, making them unsuitable for
large-scale clinical settings.

Among the fully automated techniques, the first was the
work [7] presenting a method for segmenting and labeling
head and neck vessels from CTA volumes. Now among
fully automated methods, deep learning-based ones [8—
15] completely dominate. Authors [16] pioneered the use
of U-Net for coronary artery segmentation and stenosis
classification on CTA images. Their work demonstrated
the power of CNNs in addressing anatomical variability,
and plaque morphology—challenges also present in carotid
artery segmentation. Their approach achieved a Dice score
of 0.771 for segmentation and an accuracy of 0.750 for
stenosis classification. The work [17] introduced a CNN-
based approach reformulated as a multi-task regression
in polar coordinates for black-blood MRI carotid artery
segmentation, achieving a median Dice similarity
coefficient of 0.813. Another notable method, CarotidNet
[10], employed a 3D convolutional neural network with
residual connections and dilated convolutions to segment
the carotid artery bifurcation from CTA images, achieving
a Dice similarity coefficient of 0.823.

Hybrid approaches have recently gained traction by
integrating deep learning with traditional segmentation
models. The work [18] proposed a shape-constrained
active contour model initialized using deep learning
outputs to segment the carotid artery lumen from MR
images. This hybrid framework utilized a probability atlas
for outer artery wall detection, achieving segmentation
accuracy comparable to manual methods while reducing
dependency on large labeled datasets. In [9] the Gated

Bifurcation region ‘<

AN

l 29 slices/1 cm

S

flow

—

- CCA: common
Blood carotid artery

Axial slices at three
carotid regions

Multiplanar reformation view of carotid arteries

Fig. 1. Tllustration of the carotid artery anatomy and corresponding 3D-VISTA images
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Multi-Task Network (GMT-Net) is introduced which jointly
performs lumen segmentation, outer wall segmentation, and
carotid atherosclerosis diagnosis on black-blood MRI. By
leveraging multi-task learning and novel gated exchange
and fusion layers, the model effectively captured task
correlations, achieving Dice scores of 0.9677 and 0.9669
for lumen and outer wall segmentation, respectively, and
an AUC of 0.9516 for diagnosis accuracy on the CAREIIL
dataset.

While highly effective, all the above methods rely on
a large, annotated dataset, which is challenging in scaling
them to smaller datasets. On the contrary, a few works
focus on enhancing preprocessing techniques to improve
label interpolation before deep learning model training.
Specifically, [19] utilized a nearest-neighbor interpolation
technique to address the challenge of missing annotations,
effectively propagating labels across slices with sparse
manual annotations. Notably, their approach achieved the
first rank in the Vessel Wall Segmentation 2022 Challenge
based on quantitative metrics, so we used it as State-of-the-
Art (SOTA) model in our work. However, in our opinion,
the potential of interpolation methods is not exhausted
by this approach. To test this hypothesis, in our study, we
applied three distinct interpolation techniques — Linear,
Polar, and Spline interpolation — to generate intermediate
contours between annotated slices in a 3D MRI dataset.
These methods provided different approaches to interpolate
contours based on specific mathematical principles,
ensuring smooth transitions between contours in regions
lacking direct annotations. The interpolated contours were
then used as inputs to our segmentation pipeline to enhance
the segmentation of lumen and outer wall structures.
Additionally, the performance of these techniques was
benchmarked by evaluating their impact on segmentation
accuracy, plaque detection, and vessel wall measurement,
highlighting their contribution to addressing the challenge
of unannotated slices.

Experiments Methodology

Dataset

The dataset used in this study is the Carotid Artery
Vessel Wall Segmentation Challenge 2022 dataset
consisting images of the carotid artery formed using
3D-VISTA approach. It has specifically been designed
for the automation of vessel wall segmentation and has
intensive segmentation for both lumen and outer wall in the
carotid artery. It provides high resolution images of internal,
external, and common carotid arteries, as illustrated in
Fig. 1, enabling accurate segmentation, plaque detection,
and measurement of vessel wall thickness, all essential for
the diagnosis and risk assessment of atherosclerosis.

Each case consists of an axial resliced 3D image
volume, with typical dimensions of height 100 px, width
432 px, and depth 432 slices. However, only the middle
slices were considered for the assessment of the vessel
wall due to the appropriate coronary scan technique. Of
these, 80 % of such slices were unannotated and required
interpolation techniques to deal with the nonavailability
of annotation data. The total dataset includes 50 training
cases comprising 2584 manually annotated slices of both

left and right carotids, which outline the contours of the
vessel walls: internal common carotid as well as the
external carotid. However, due to variable image quality
in this dataset, only slices where the vessel wall is clearly
visible have been annotated. These annotations originated
using the CASCADE software, renowned for its sub-pixel
accuracy in vessel wall delineation.

The dataset was annotated in an XML format, using
the CASCADE software/algorithm, demonstrate high-
resolution visualization of the vessel wall, aiding in the
segmentation of lumen and outer wall structures. For the
evaluation of participants, key metrics included the Dice
Similarity Coefficient (DSC), Hausdorff Distance (HD),
and lumen and wall area differences to assess anatomic
accuracy and ensure clinically usable results from
segmentations. The DSC, defined as

_2/4n B
[4] +[B]
measures the overlap between the predicted segmentation

A and ground truth B. The HD, calculated as

HD(A4, B) = max(sup,¢ 4inf, ¢ pd(a, b), supepinf,c 4d(a, b)),

quantifies the largest boundary distance between 4 and B.
Cohen’s kappa metric, defined as

Po—Pe
K="—"")
1 —Pe
where p, represents the observed agreement and p, the
expected agreement by chance, was used to evaluate
the inter-rater or algorithmic reliability of segmentation

annotations. The normalized area difference was
determined using

|Apredicted B AGroundTruthl

AArea =
A GroundTruth

providing insights into the clinical relevance of
segmentation accuracy.

Preprocessing

Preprocessing is a very significant step in medical
image analysis, predominantly when there is incomplete
full annotation of the dataset. Only 20 % of slices were
manually annotated in the dataset that had been used
for this study. To address the lack of annotated slices in
the dataset, interpolation techniques were employed to
propagate the lumen and wall annotations to unannotated
slices. As shown in Fig. 2, the segmentation process
involves identifying the lumen and subsequently annotating
the outer wall of the carotid artery.

The vessel walls were divided into two important
categories to address the discontinuity in the annotations:
normal vessel walls and atherosclerotic vessel walls. These
differentiation aspects are crucial because variations in the
anatomy and pathology can significantly affect the accuracy
of segmentation models. Additionally, lumen areas were
labeled separately to ensure the accurate representation of
vessel structure at a particular point, which is critical for
diagnosing stenosis and assessing overall vessel health.
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Fig. 2. Visualization of the annotation process for carotid artery segmentation: original axial MRI slice (a); lumen segmentation (b);
lumen and outer wall segmentation (c)

Interpolation Methods

Linear Interpolation. Linear interpolation is the
most straightforward technique where each point on the
interpolated contour is computed as a weighted average
between corresponding points on two adjacent contours.
Given two contours at slices z, and z; with points P and
P, the linearly interpolated contour at an intermediate slice
z,1s given by:

P,=(1—-1HPy+tPy,

where ¢ is the normalized interpolation parameter, 0 <7< 1.
This method provides a direct interpolation of the positions
of points but can produce unnatural shapes if the contours
are highly irregular, as it does not account for radial
transformations or curvature.

Polar Interpolation. Polar interpolation is a
modification of Linear interpolation that operates in
polar coordinates relative to a centroid, making it more
suitable for shapes with rotational symmetry or roughly
circular geometry. First, the centroid of each contour is
calculated. Then, the contour points are converted to polar
coordinates, yielding radius » and angle 0 for each point.
For corresponding points on two contours, the interpolated
radius r, at an intermediate slice is calculated as:

rt:(l —t)r0+tr1,

while keeping the angle 8 constant. The interpolated points
are then converted back to Cartesian coordinates. This
approach helps maintain the radial structure of the contours,
reducing distortions that can arise with linear interpolation
when working with circular or elliptical shapes.

Spline Interpolation. To achieve smoother
interpolations, we employed Spline interpolation,
specifically B-splines, which provide a continuous and
smooth fit to the contour points by using piecewise
polynomial functions. B-splines are defined by a set of
control points and a degree (or order) k of the polynomial,
which determines the smoothness and flexibility of the
spline. In our implementation, we selected control points
from each original contour and constructed a spline for both
x and y coordinates separately.

Let P; = (x;, ;) be the set of n points on a given
contour. A B-spline S(¢) for each coordinate is defined as a
weighted sum of basis functions N, (7):

S.(1) = zl XN, (1), S,(6) = ﬁlyiN,-,Ka),

where ¢ is a parameter (typically normalized to range
from 0 to 1), and N, ,(7) are the B-spline basis functions
of degree k. The basis functions are recursively defined,
starting from k = 0 as:

Lo if < () <tf,

N ()=
o) 0, otherwise,

where {¢;} is the knot vector that defines the intervals over
which each basis function is non-zero.

For a pair of contours on slices z, and z;, we construct
B-splines S, (1), S, .o(#) and S, .,(?), S, (1) for each
contour. To interpolate a contour for an intermediate slice
z; (where ¢ is between 0 and 1), we calculate intermediate
splines S, (#) and S, (¢) as:

Sx,t(t) = (1 - t)Sx,zO(t) + th,le):
Sy,t(t) = (1 - t)Sy,zO(t) + tSy,zl(t)'

The interpolated contour points for slice z, are then
given by evaluating S, (7) and S, (¢) at uniformly spaced
values of 7 (e.g., from 0 to 1 in equal intervals to ensure
uniform sampling).

This approach allows each interpolated contour to
inherit the smoothness of the original B-spline functions,
providing a natural and continuous shape. The piecewise
polynomial nature of B-splines ensures that any sharp
changes or high curvature present in the original contours
are appropriately captured, while avoiding artifacts like
abrupt angles or linear segments that may appear with
simpler interpolation methods.

The overall framework implementation for carotid
artery segmentation, from preprocessing to final model
training, is illustrated in Fig. 3. This pipeline includes
preprocessing and label splitting, followed by contours
interpolation, machine learning-based label propagation,
and the final nnUNet model training.

nnUNet Model Training

After pre-processing, the full image volumes of
segmentation results were trained and predicted using
the nnUNet model. nnUNet is one of the most important
frameworks in medical image segmentation due to
its capability in adapting model architecture and hyper
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3D MRI
volume
dcm + qvj + qvs l
Step-2 Step-3 Step-4
Preprocessing Contour ML based — Final nnUnet
Interpolation Label Mpqel
propagation Training

Segmented
Labels

Fig. 3. Implemetation of Carotid Artery Segmentation Framework: dem — input DICOM file, qvj + qvs are XML files holding
information about the annotations

parameters to the specifics of a given dataset with minimal
manual tuning. Its strength lies in being self-configuring,
thereby auto-tuning model settings for image modalities,
resolutions, and segmentation tasks across medical datasets.

In our approach, we first trained the nnUNet on the
interpolated labels from preprocessing. Training was done
on fully interpolated labels throughout the volume of the 3D
image, allowing the network to learn from both slices with
and without annotations. Segmentation of medical imagery,
including this dataset, highlights the strengths of nnUNet. It
demonstrates resilience with respect to complex anatomical
structures, such as the shapes of the carotid artery wall
and the potential presence of atherosclerotic plaques.

The final model used was the nnUNetV2 version
which includes several improvements related to efficiency,
increasing image sizes, and integrating recent innovations
in medical image segmentation. Generally, nnUNet
generalizes well to various datasets and medical imaging
modalities, making it particularly well-suited for use
cases with only a few annotations available in the dataset.
By combining both automatic configuration and robust
architectural features, the nnUNet model has become the
SOTA solution in medical image segmentation, ranking
first consecutively in competitions like MICCAL

The combination of contours interpolation during
pre-processing with the powerful architecture of nnUNet
created an effective pipeline for segmenting vessel walls
of the carotid artery, even with only partial annotations.
This approach ensured robust and accurate segmentation,
addressing challenges of incomplete labeling and the
complex anatomical structures encountered in medical
imaging.

Experiments and Results

Implementation Details and Evaluation Metric

The available dataset, consisting of 50 cases, was divided
into a training set and a testing set. Specifically, 43 cases
(cases 3 to 7, 15, and 17 to 54) were designated for training,
while 7 cases (cases 8 to 14) were reserved for testing.

The model was trained for 500 epochs without employing
cross-validation to evaluate its performance on the test set.

For this implementation, we utilized an NVIDIA RTX
4060 GPU. It is important to note that all data augmentation
techniques, such as random cropping, random rotation,
random scaling, random flipping, random Gaussian noise
addition, and elastic deformation, were automatically
handled by the nnUNet framework. These augmentation
techniques were applied by the model to increase
the diversity of the training data without any manual
intervention.

Results

In this study, we evaluated four interpolation
methods — Linear, Nearest Neighbor, Polar, and Spline
interpolation — on cases 8, 9, 10, 11, 12, 13, and 14. Our
results were then compared with those from the official
challenge page of the Vessel Wall Segmentation Challenge
2022, where models were trained on a more extensive
dataset (50 cases) and evaluated on a larger test set (25
cases) compared to our limited dataset (43 training cases
and 7 test cases). These results were used as SOTA model.
Additionally, our requests to obtain annotated test cases
from the challenge organizers went unanswered, limiting
our ability to directly validate against the challenge data.

The results are presented in Table.

Among the four interpolation methods tested, Polar
interpolation generally performed well across most metrics,
balancing accuracy and computational stability, particularly
in cases with few missing slices. The Spline interpolation
method, however, showed high variability, especially in
more complex cases with irregular contours, as evidenced
by its DSC, lumen area, and wall area differences. For
example, case 11 displayed substantial anomalies across all
interpolation methods, with Polar and Spline interpolations
yielding particularly high errors in Hausdorff Distance
and Normalized Wall Index Difference. The inconsistency
in case 11 could be attributed to significant structural
differences or abnormalities in the vessel wall contours,
causing instability in interpolation-based reconstructions.
Notably, similar anomalies were detected when applying
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Table. Comparison of Contour Interpolation Techniques Results for Carotid Vessel Wall Segmentation Metrics

Metrics Interpolation Methods

Linear Spline Polar SOTA
DSC 0.80 0.72 0.76 0.73
Lumen Area Difference 0.07 0.05 0.06 0.08
Wall Area Difference 0.09 0.18 0.13 0.18
Normalized Wall Index Difference 0.79 3.74 1.01 2.64
Hausdorff Distance (Lumen) 0.17 0.16 0.16 0.17
Hausdorff Distance (Wall) 0.38 0.98 0.58 1.16
Cohen’s Kappa 0.92 0.64 0.77 0.85
Quantitative Score 0.86 0.75 0.80 0.79

the Nearest Neighbor interpolation method, indicating
that these variances might be inherent to the data or an
indication of irregular anatomy in these cases.

Comparing Linear interpolation to Nearest Neighbor
interpolation, we found that Linear interpolation yielded
consistently higher Quantitative Scores and lower wall area
differences, indicating its better ability to smooth transitions
between slices. Nearest Neighbor interpolation, however,
provided competitive results in lumen area differences and
sometimes surpassed Linear in Cohen’s Kappa, suggesting
that it may better preserve abrupt contour changes in cases
with more regular slice structures.

Overall, the Polar interpolation method emerges as a
balanced choice, particularly when maintaining smoothness
between slices is crucial. Linear interpolation also remains
a solid choice for cases with relatively even contours, while
Spline interpolation high sensitivity to contour irregularities
makes it less reliable in structurally complex cases.

Conclusion

In conclusion, the analysis and comparison of different
contour interpolation methods, namely Polar interpolation,
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