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Abstract

As telehealth services have become integral to healthcare applications; robust authentication mechanisms are critical for
safeguarding sensitive patient data and services. Conventional authentication techniques including passwords and tokens
are susceptible to theft and security breaches. This vulnerability highlights the need for alternative methods that offer
improved security measures and ease of use. Biometric authentication, which leverages unique physical and behavioral
traits, has emerged as a promising alternative. Among various biometric modalities, electrocardiogram (ECG) signals
stand out because of their uniqueness, stability, and noninvasive nature. This study introduces an innovative deep-
learning-based authentication system that utilizes ECG signals to enhance security in Internet of Things (IoT)-powered
telehealth environments. The proposed model employs hybrid architecture, starting with a Siamese Neural Network
(SNN) for dynamic verification, followed by a Convolutional Neural Network (CNN) for feature extraction, utilizing
an optimized Sequential Beat Aggregation approach for robust ECG-based authentication. The system operates securely
and adaptively, and performs real-time authentication without requiring human intervention. The research approach
involved the acquisition and processing of electrocardiogram data from the ECG-ID dataset which encompassed 310
ECG individuals obtained from 90 individual subjects. This dataset provided a comprehensive set of samples for training
and evaluation. The model achieved high authentication accuracy (98.5 %—99.5 %) and a false acceptance rate of 0.1 %
with minimal computational overhead, validating its feasibility for real-time applications. This study integrates ECG-
based authentication into telehealth systems, creating a secure foundation for safeguarding patient data. The innovative
use of ECG signals advances secure and adaptable for a personalized remote health monitoring system development.
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AHHOTaNMA
TeneMeMIIMHCKNE YCIYTH CTaJM HEOTHEMIIEMOH 4aCThi0 MEIUIIMHCKUX MPUIIOKCHUIT, Ha/IC)KHBIC MEXaHU3MbI
ayTeHTH()HMKAMK MMEIOT pellaoliee 3HAYCHHE Ul 3aIllUThl KOH(GUICHIHATbHBIX JaHHBIX HAlMCHTOB H
MPEOCTABIICMBIX CEPBUCOB. TpaJHIIOHHbIC METOABI ayTCHTH(HKALNN, TAKHE KaK MApOJIH U TOKCHBI, TIOABCPIKCHBI

KpaXkaM U HapyIICHUSIM 6e30MacHOCTH. ITa YSI3BUMOCTbD IOIYEPKUBACT HEOOXOAUMOCTD aIbTEPHATHBHBIX METOJIOB,
KOTOpbIe 00ecneYrnBaroT 6ojiee BHICOKHI YPOBCHb 0E30MAaCHOCTH U yA0OCTBO MCIIONB30BaHHs. broMeTprueckast
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A deep learning approach for adaptive electrocardiogram-based authentication in an internet of things enabled...

ayTeHTH(UKALNS, HCTIONB3YIONIas YHUKaIbHbIE (M3UUECKUE U TIOBEICHIECKHE XapaKTePHCTHKH, CTajla MepCeKTUBHON
anpTepHaTHBON. Cpean pa3InyHbIX OMOMETPUYECKHX METOJOB CHIHAIIBI dMekTpokapanorpamMmsl (IKI') BeiiesnsroTcst
CBOEH YHHKAIbHOCTBIO, CTAOMIBHOCTBIO U HEMHBA3MBHBIM XapakTepoM. B maHHOM HccinenoBaHUU MpeacTaBlieH
WHHOBAIIMOHHBIH METOJ ayTeHTU(UKAIMA HAa OCHOBE ITyOOKOro oO0ydeHus, ucrnonb3yromuid DK -curuansr nis
TTOBBIIICHUS YPOBHA O€30ITaCHOCTH B TEIEMEIUINHCKUX CHCTeMax, padoTaromux Ha 0aze nHTepHeTa Bemeil (IoT).
[IpennoxeHHass MOZENb HCHONB3YyeT THOPUIHYIO apXUTEKTYpy: CHadajla MPUMEHSETCS] CHaMCKasl HeHpOoHHas ceTh
(SNN) nnst auHamMudeckol BepuuKanny, 3aTeM cBepTouHas HefiponHast cetb (CNN) jurs u3BiIedeHNs IPU3HAKOB
C UCIIOJb30BaHUEM ONTHMU3UPOBAHHOTO METO/A MOCIEA0BATEIBHON arperanuy CepeYHbIX IIUKIIOB Ul HaJe)KHOH
ayrentudukanun Ha ocHoBe DKI. Cucrema QyHKIMOHMPYET OE30IIaCHO U aalTUBHO, BBITOIHSS ay TEHTU(HUKALMIO B
peansHOM BpeMeHH 0e3 BMEIIaTeIbCTBa uesloBeka. B pamkax uccienoBanus Obita mposeneHa oopadorka qanubix DK
n3 HabOopa nanubix ECG-ID, Bkmrouaroniero 310 OKI'-curnanos ot 90 pa3nuyuHBIX YYaCTHHKOB. DTOT HAOOp AaHHBIX
MIPEI0CTaBUII OOIIMPHYIO BEIOOPKY ATl 00ydeHUs U OLeHKH. MoJenb JOCTUITIA BEICOKOH TOUHOCTH ayTeHTH(HUKAINN
(98,5-99,5 %) n moxasarens J0XXHOTO Aomycka Ha yposHe 0,1 % mpy MHHNMAaTbHOH BEIMHCIHTENEHON HArpysKe,
YTO MOATBEPXKIAeT ee MPUMEHUMOCTh Ul 33/1a4 B pealbHOM BpeMeHHu. Hacrosmee ucciaeqoBaHe HHTETPUPYET
ayreHTHduKanuio Ha ocHoBe DKI' B TerleMeanIMHCKNE CHCTEMBI, CO3/1aBast Ha/ISKHYIO OCHOBY JUIS 3QI[UTHI JAHHBIX
nanueHToB. VHHOBamoHHoe ucnonb3oBanue DKI'-curnanoB crocoOCTByeT co3nannio Oe30IacHOM, aJanTHBHOW M
HEePCOHATN3UPOBAHHON CHCTEMBI yIQICHHOTO MOHUTOPHHI'A 310POBbSI.

Kirouesblie ciioBa

OuoMeTpruYecKas ayTeHTH(UKAIUS, 0€30MaCHOCTh TEICMEINIINHbI, aIalITUBHBIC CUCTEMbI ayTCHTU(HUKALIUK, aHAJIN3
OKT -curHasnoB, HEHPOHHbIE CETH, THOPUIHOE [Ty0OKOe 00yUYeHHE
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Introduction

With the growing adoption of telehealth systems, the
demand for secure and reliable management of patient
health information has significantly increased. [oT-enabled
telehealth systems have become integral in enhancing
patient care, enabling remote monitoring, and streamlining
healthcare delivery [1, 2]. However, the spread of connected
devices has also introduced significant security challenges,
particularly in safeguarding sensitive patient data and
ensuring secure access to telehealth services. Traditional
authentication methods, including passwords and tokens,
are increasingly inadequate owing to vulnerabilities, such
as theft, replication, and brute-force attacks [3]. In the face
of the growing threat landscape, there is an urgent need
for new, robust, and flexible authentication systems aimed
at addressing the unique needs of Internet of Things (IoT)
telehealth environments [4].

Biometric authentication, which leverages unique
physiological and behavioral traits, has emerged as a
promising solution for securing loT-enabled systems and
providing enhanced security and user convenience. Unlike
traditional methods, biometric systems leverage unique
physiological or behavioral traits, making it difficult to
replicate or falsify [3]. Among the various biometric
modalities, electrocardiogram (ECG) signals stand out
because of their intrinsic liveness, universality, and
resistance to spoofing. ECG signals capture the electrical
activity of the heart, offering a dynamic and highly
individualized biometric pattern [5]. This unique property
makes ECG-based systems robust alternatives for secure
and reliable user authentication in loT-enabled telehealth
systems.

ECG signals are private and accurate and more reliable
than other biometrics [6]. Such P-Q-R-S-T waveform
patterns, as shown in Fig. 1 provide proof of the subject
liveness and uniqueness. The nature of ECG signals is

complex because of their random, involuntary, and
complex characteristics leading to better authentication
capabilities [7].

Artificial intelligence improves loT-enabled telehealth
security by enabling reliable ECG-based biometric
authentication. Machine learning techniques like K-Nearest
Neighbor, Support Vector Machine and Random Forest are
used, with deep learning increasingly favored for its pattern
analysis and accuracy [8, 9]. Deep Learning techniques,
particularly neural networks, have emerged as a possible
telehealth ECG signal authentication solution. Using huge
datasets of ECG signals, neural networks can be trained
to understand the distinctive patterns and properties that
distinguish real signals from fraudulent ones [10, 11].

QRS
Complex

R

ST
Segment

PR Interval Q
S

QT Interval

Fig. 1. Segment Representation of ECG
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This study addresses the growing demand for robust
authentication systems amid rising digital reliance and
data security challenges. By leveraging deep learning,
it proposes an adaptive authentication framework
that combines Siamese Neural Networks (SNNs) for
verification and Convolutional Neural Networks (CNNs)
for multiclass authentication, utilizing an optimized
Sequential Beat Aggregation approach. The system
enhances ECG biometrics, improves authentication speed
and efficiency, and detects noise-inducing abnormalities,
addressing key IoT telehealth challenges, such as evolving
threat landscapes, dynamic user behavior, and real-time
processing requirements.

Our study presents three key contributions: showing
the use of ECG signals for adaptive authentication
in IoT telehealth systems, developing advanced deep
learning models that merge biometric verification with
authentication, and assessing the system resilience
under various signal conditions to enhance security and
accessibility in IoT-based healthcare environments.

Literature Survey

ECG Authentication Using Machine Learning and
Deep Learning Models

Several studies have explored the use of Machine
Learning and Deep Learning models for ECG-based
authentication. Asadian et al. [12] examined the
feasibility of ECG-based authentication systems, while
Shdefat et al. [13] discussed opportunities and challenges
in their implementation. Lin Li et al. [14] extended
the literature by discussing the application of ECGs,
Electroencephalography, and Photoplethysmogram in
authentication systems. Pereira et al. [15] researched
different ways of capturing data to make the authentication
process more efficient in terms of its precision.

Hammad et al. [16] proposed using Deep Neural
Networks with architectures such as Residual
Convolutional Neural Networks (ResNet) and end-to-end
CNNs for reliable human authentication. Using datasets
like Physikalisch-Technische Bundesanstalt (PTB) and
Check Your Bio-Signals Here, their models achieved an
average accuracy of 98.5 %. Similarly, Labati et al. [17]
introduced Deep-ECG, a biometric recognition method
combining signal preprocessing, CNN feature extraction,
and SoftMax-based detection. Their work demonstrated
improved performance in scenarios such as identity
verification and periodic re-authentication, outperforming
earlier approaches.

Hybrid and Advanced Architectures

Martin et al. [18] proposed “BioECG” which integrates
CNN and Long short-term memory model to enhance
authentication precision. Their method emphasized the
importance of addressing temporal dependencies in ECG
signals, resulting in improved accuracy and robustness.
D’angelis et al. [19] employed Vision Transformers
for ECG biometric recognition, effectively capturing
intricate temporal and spatial signal features. AlDuwaile
and Islam [20] utilized single heartbeat analysis with
CNNss, simplifying data collection while maintaining high
accuracy.

Some of the studies also highlighted novel hybrid
system models. For instance, Ivanciu et al. [21]
implemented a SNN using ECG signal images, achieving
an accuracy of 87.3 %. Albuquerque et al. [22] employed
Random Under-Sampling Boosting and Nearest Neighbor
Search, achieving accuracy rates of 97.4 % and 99.5 %,
respectively, for ECG-based user identification. These
works highlight the potential of hybrid models for
improving authentication accuracy and adaptability.

Multi-Modal Biometric Systems

In order the overcome the above-mentioned limitations
of uni-modal systems, Alkeem et al. [23] introduced a
multi-modal biometric system that integrates ECG signals,
facial images, and fingerprints. The system utilized
multitasking learning and feature fusion, demonstrating
superior accuracy and generalization. Multi-modal methods
outperformed single-modal approaches, proving highly
effective for secure authentication and gender classification.

Emerging Techniques and Applications

Recent advancements have introduced novel techniques
such as lightweight multi-factor authentication strategies
[23] which incorporate digital signatures and device
capabilities to enhance [oT security. Similarly, studies [24]
tailored authentication methods for the Internet of Medical
Things, utilizing human biometrics to establish secure
device communication. Blockchain-based solutions have
also emerged, such as the “Bubbles-of-Trust” scheme [25],
which employs virtual trust zones and Ethereum blockchain
technology to streamline authentication in [oT networks
[26-28].

Limitations and Gaps in Existing Research

While the reviewed studies demonstrate significant
advancements in ECG biometrics, several limitations
persist. Many approaches [16, 17, 29] focus primarily
on accuracy, often neglecting computational efficiency
and robustness against noisy or heterogeneous datasets.
Additionally, while methods integrating CNN and LSTM
architectures [18, 20] show promise, they often fail to
fully leverage the potential of these models for capturing
complex temporal dynamics in ECG signals. Moreover,
scalability and real-time processing remain challenges
in deploying these systems for practical IoT telehealth
applications.

Proposed Methodology

In this paper, we have proposed an innovative approach
to use deep learning-based ECG in loT-based telehealth
systems for patient or user authentication and attempted
to develop a model. By passing through steps like: data
gathering, preparation, model creation, training, testing,
tuning, implementation and monitoring it ensures security
and flexibility. Fig. 2 shows how this process helps solve
authentication problems.

The proposed model

Our Adaptive Authentication System is built on SNN
and CNN as foundational models for ECG signal analysis.
SNN model is for time related change, and CNN model is
to interpret the pattern over the signals. Being trained on
thousands of highly processed ECG data, and continuing
to show robust performance in test data with accuracy,
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Biometric Data
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Feature Extraction

Model Training

Optimal Algorithm Accuracy Check
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Fig. 2. Deep learning process for adaptive authentication

sensitivity, precision, Fl-score, Area Under the Curve
(AUC), specificity. The system improves incrementally
with small changes contributed over time. It also keeps
a good balance between being secure and easy to use,
offering a safe and practical solution for users.

The core feature of this model is its adaptability to
dynamic conditions, making it particularly suitable for
IoT-enabled telehealth environments. The deep learning
mechanisms within the architecture are designed to adjust
to evolving threat landscapes and changing user behaviors,
ensuring high levels of dependability and efficiency [30].
The model uses Sequential Beat Aggregation, training with
individual heartbeats and aggregating predictions from
multiple beats during inference, balancing simplicity with
accuracy while reducing complexity and data demands of
longer concatenated signals.

Sequential Beat Aggregation approach actually
improves robustness by reducing anomalous beats impact,
ensuring real-time adaptability essential for [oT telehealth.
It can be seamlessly integrated with IoT devices to work
efficiently in the real world. The lightweight, adaptive,
and fast design of this system makes it an excellent choice
for secure and practical telehealth deployments and
applications.

To provide a comprehensive overview, Fig. 3 explains
the methodology of the proposed model, highlighting the
integration of data processing, model architecture, and
deployment strategies.

The ECG signal first enters through the SNN which
mainly focuses on capturing the changes over time and
important details. The result is then sent to the CNN where
layers find patterns in the signal and reduce its size for
quicker processing. This step-by-step method improves the
ability to identify key features. The CNN result is turned into
a single line of data and sent to a dense layer, which prepares
it for further processing. Lastly, a classifier at the end of the

ECG Sensors

ECG Data Acquisition

Identification

—> Enrolment

Model Development

model turns the scores into a format that can be used for
identifying different classes. The model learns from the key
points in the ECG signal to tell the difference between real
and fake signals, making sure it works well and accurately
for user identification. This proposed design effectively
combines speed and accuracy in classification tasks.

Convolution neural network layers

It is a feed-forward neural network that is very
frequently used for medical analysis, object detection,
face recognition, and picture classification [31]. The CNN
network has a variety of designs, including VGG-Net [32],
Inception [33], ResNet [16] DenseNet [34], and Xception
Net [35]. Generally, the layers used for experimental
analysis are the same in all CNN models. The first layer
typically used to extract features from an ECG trace is
the convolution layer. To achieve this, move a kernel or
feature detector over the input data or feature vector and
compute the dot product of the input and kernel at each
location. After extracting the features, the network is made
non-linear using activation function which also speeds up
total computation. After the activation layer, a rectified
feature map is put through the max pooling layer. The
down-sampling process of pooling lowers the feature map
size. Then, a shared feature map is sent to be flattened into
a single, lengthy continuous linear vector. This study used
six convolution layers and an identical number of pooling
layers. Batch normalization was also performed in various
layers to solve the covariate shift problem [23].

Fully connected layers

A dense block comprises interconnected hidden layers
where each neuron receives input from all preceding
neurons. Using matrix-vector multiplication, it adjusts
output dimensionality and applies an activation function for
accurate classification or prediction.

y = activation(z), where z=W X x + b,

Convolution Neural
Network Model

Authentication

Accepted

Y

Verified (Classification)
Siamese Neural
Network Model
Not Verified %
Verification Q

Rejected

Fig. 3. Adaptive Authentication Biometric System Proposed Model
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where z is the pre-activation vector and activation
represents the activation function 6. Dense layers are
integral to neural networks, connecting inputs to outputs
for precise predictions. For ECG-based authentication,
a single dense layer with 286 neurons enables accurate
classification. The setup is: Hybrid SNN-CNN output —
Flatten Layer — Dense Layers — Classifier. Fig. 4
illustrates the CNN architecture.

Threshold based-authentication algorithm

The probability-based threshold function is the
probability of a match between a test signal and a stored
reference signal, usually for signal processing applications
like a biometric authentication system. It calculates the
Probability Density Functions (PDF), of the test and
reference signals for likelihoods of different values of the
signal. Comparing the PDFs gives the match probability.
The threshold value is determined based on the required
security level and False Acceptance Rate (FAR). Increasing
the threshold makes FAR higher but improves security,
whereas decreasing it reduces both.

Loss function

This function measures an algorithm performance
by quantifying discrepancies between predicted outputs
and target values, often using cross-entropy for assessing
classification models accuracy against actual labels.
This study used Binary Cross Entropy (BCE) as a loss
function for binary classification tasks like ECG data
authentication [24]. In a hybrid SNN-CNN model for
human authentication, BCE loss can help the general model
focus on the essential ECG signal regions while ignoring
the areas that are less important to the authentication goal.
BCE will be used as an optimization method to discover
the best values valid for human authentication based on
ECG signals [25].

1 N
BCE=~— Yylog() + (1 - ylog(l - 7).
i=0

Here, predictions and true values are represented by y;
and y,, respectively, where N denotes the number of training
sets for the i-th slice (i € N).

Feature Extraction

=

o=

ECG Signal !—1|_L

Convolutional
Layer 1

Hyperparameters settings

Hyperparameters optimize the training success of
the hybrid SNN-CNN deep learning model for ECG-
based authentication. Key parameters include the loss
function, optimizer, batch size, learning rate, and epochs,
significantly boosting efficiency while ensuring adaptability
if the primary objective encounters challenges. Lists of the
hyperparameters chosen for training SNN end CNN: loss
functions — Categorical Cross Entropy; learning rate —
0.00001; batch size — 64; epochs — 100; optimizer —
Adam.

Similarly, these hyperparameters are frequently adjusted
using a grid search methodology to obtain the best possible
combination for the training process. For instance, rapid
convergence of the model that shoots past the global
minimum may be caused by a high learning rate [36]. On
the other hand, a slow learning rate may stall training,
while too few epochs cause underfitting, and too many lead
to overfitting. Proper parameter tuning enhances model
accuracy and robustness.

Experiment Results

Dataset description

The ECG-ID database consists of 310 ECG recordings
from 90 subjects, aged 13—75, including 44 men and 46
women. Each recording is a 20-second ECG Lead I signal,
sampled at 500 Hz with 12-bit resolution and a nominal
range of +£10 mV. The dataset includes 2—20 recordings per
individual, collected over a period of up to six months, with
intervals ranging from days to months between sessions.
This multi-session structure allows for the evaluation of
temporal variability in ECG signals, making it suitable for
assessing the long-term stability of ECG-based biometric
systems.

The dataset provides both noisy raw signals (Signal 0)
and filtered signals (Signal 1), enabling detailed analysis
of ECG morphology under different noise conditions. The
recordings were collected using standard ECG electrodes
placed on the wrists, making the acquisition process non-
invasive and suitable for real-world applications.

Classification

Pooling

Convolutional l
Layer N

Fully Connected
Neural Network

Fig. 4. Diagram of CNN Architecture
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Dataset preprocessing and augmentation

Data preparation would enhance quality data analysis
on ECG-ID dataset signals by effectively cleaning the
initial raw signals. These are the high pass set up to
remove, baseline drift and notch filter to remove power
line interference along with resampling [37]. Preprocessing
also standardizes the ECG signals, and quality control
is used in order to filter artifacts also forms part of it.
Data augmentation shown in Fig. 5 enlarges the dataset,
increases the stability and optimizes performance through
the introduction of variability. Scaling, rotation, flipping,
and time-shifting are the techniques of diversification
of the dataset. These approaches mainly address issues
related with overfitting, boosting model accuracy and
credibility, scalability, and, therefore, boosting the general
performance of ECG-based biometrics. The figure displays
the original signal (blue) alongside signals modified by
three augmentation methods: noise addition (orange), time-
shifting (green), and pitch-shifting (red).

Results

This section presents a detailed analysis and conclusions
drawn from experimental evaluations, offering insights into
the system performance across various scenarios. Both
quantitative and qualitative data are thoroughly examined
to highlight the system advantages, identify areas for
improvement, and evaluate overall efficacy. The experiment
utilized 1D ECG signals of length 256, with SNN and CNN
models trained using a batch size of 64, a learning rate of
0.00001, and the Adam optimizer with decay.

Training Phase

During the training phase of SNN model, the ECG
dataset underwent a preprocessing phase wherein the ECG
segments were truncated to 700 per individual, resulting in
a well-balanced distribution of classes. This step ensures an
equal representation of different classes, providing a more
robust foundation for subsequent analysis.

Following the truncation, the pre-processed data
underwent normalization, transforming the values to a
standardized range between 0 and 1. This normalization
process is crucial for mitigating potential anomalies that
could complicate signal analysis. By scaling the data to
a uniform range, the impact of variations in magnitude
is minimized, facilitating a more consistent and effective
analysis of ECG signals.

— Original Signal
Noise-added Signal
— Time-shifted
4 — Pitch-shifted Signal
>
=
5
=
=
=
g
<
0
-2
0 ' 100 ' 200
Time, s

Fig. 5. Data augmentation techniques

The dataset includes signals from 90 individuals,
resulting in a total of 63,000 segments (90 individuals x
700 segments), ensuring a balanced distribution across all
individuals. This balance is particularly important for the
SNN which compares pairs of ECG signals to verify if they
belong to the same individual for human authentication,
as it allows the model to learn a robust similarity metric
by training on an equal number of positive pairs (same
individual) and negative pairs (different individuals) for
each class.

Subsequently, the normalized data is shuffled and
organized into pairs. Each pair is categorized as either
similar (Signal 1) if the segments belong to the same class,
or dissimilar (Signal 0) if they pertain to different classes.
This pairing strategy, illustrated in Fig. 6, sets the stage
for training a classifier to distinguish between similar and
dissimilar ECG segments.

Specifically, similar pairs (positive pairs) help the model
learn the characteristics of matching signals within the
same patient class, while dissimilar pairs (negative pairs)
enable the model to identify clear differences between
unrelated ECG segments. Fig. 6, a shows an example
of a positive pair where both signals closely match, and
Fig. 6, b displays a negative pair where the signals differ
significantly. This approach improves the model ability to
generalize and enhances classification performance.

a b
) 1 W —— Reference Signal 12 — Reference Signal
g 0.8 i Paired Signal g 0.8 | Paired Signal
Tg 0.6 g 0.6 -
s} S
= 1 i = Jl
% 0.4 4o M ang Al s o s A A e %; 0.4 4 "‘,'-’\\rs!,\-"* f"‘ VAN AR AN G AL oz
I 2
g g
< 0.2 1 ’ << 0.2 1

0 ' 100 ' 200 0 100 200
Time, s Time, s
Fig. 6. Examples of pairs: positive (a) and negative (b)
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To calculate the classifier’s performance, the dataset is
divided into training, validation, and test sets. The Sklearn
selection model is utilized for this task, randomly assigning
60 % of the data to training, 20 % to validation, and 20 %
to testing. The training set is used to design and fine-tune
the classifier, while the test set is held out to assess the
classifier’s performance and accuracy.

This strategic division of the dataset into training,
validation, and test sets not only facilitates robust training
but also ensures an unbiased assessment of the classifier’s
generalization to new, unseen data. The allocation
percentages are chosen to strike a balance between
providing sufficient data for model training and maintaining
an adequate portion for independent evaluation. This
meticulous approach enhances the reliability and
applicability of the classifier in real-world scenarios.

During the training phase of CNN model, the ECG
dataset underwent a segmentation process resulting in
10,000 segments per individual, ensuring a balanced class
distribution. This segmentation strategy aims to capture
a comprehensive representation of each class, laying the
groundwork for a more robust analysis.

Following segmentation, the pre-processed data
underwent normalization, scaling the values to a
standardized range between 0 and 1. This normalization
step is pivotal in mitigating anomalies that might complicate
signal analysis. By standardizing the data, variations in
magnitude are minimized providing a more consistent
foundation for subsequent analysis of ECG signals.

Subsequently, the normalized data is shuffled and
partitioned into training and validation sets. This shuftling
process is crucial for preventing the model from learning
sequence patterns inherent in the data, ensuring a more
unbiased evaluation. The division into training and
validation sets enables a thorough assessment of the
classifier’s performance during development.

The dataset includes signals from 90 individuals, with
each individual’s 700 original segments augmented to

— Actual Signal

ID:1000
Score: 0.1589

ID:1001
Score: 0.1943

create 10,000 segments, resulting in a total of 900,000
segments (90 individuals x 10,000 segments), ensuring a
balanced distribution across all individuals. This balance is
particularly important for the CNN which classifies ECG
signals to identify individuals for human authentication, as
it allows the model to learn robust features from an equal
number of segments for each class, preventing bias toward
overrepresented individuals and improving classification
accuracy.

To achieve this partitioning, the Sklearn selection model
was utilized, randomly allocating 60 % of the data to the
training set, 20 % to the validation set, and 20 % for testing.
The training set serves as the basis for designing and
fine-tuning the classifier, while the validation set aids in
monitoring the model performance and making adjustments
to enhance generalization.

The remaining 20 % of the data is reserved for testing,
serving as an independent set for the final evaluation of
the classifier’s performance and accuracy. This separation
into distinct training, validation, and test sets ensures a
comprehensive assessment of the classifier’s ability to
generalize to new, unseen data.

Testing Phase

For the verification task, the SNN was trained for
100 epochs, incorporating Model Checkpoint and early
stopping mechanisms to monitor validation loss. Using
Euclidean Distance, the SNN employed contrastive loss
during training. This loss function evaluates the distance
between outputs for positive and negative samples,
ensuring the network effectively discriminates between
these instances for accurate authentication. The training
process typically required 20 to 25 minutes, with validation
loss stabilizing at 0.3 %. Through experimentation, a
decision threshold margin of 0.0009999 was established.
If the similarity score equals or exceeds this threshold,
the ECG segment is classified as a match with an enrolled
template, resulting in successful verification. Some test
samples from our experiment are illustrated in Fig. 7.
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Fig. 7. Predicted samples from verification (SNN) model
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For the authentication task, the CNN model underwent
training for an average duration of 4 hours across 100
epochs. Early stopping and Model Checkpoint prevented
the possibility of finishing after around 20-25 epochs on
average. With an accuracy of 98.8 % and a validation loss
of 0.32 %, as shown in Fig. §, a, the rapid convergence of
training and validation accuracy within the first 20 epochs
are demonstrated, while Fig. 8, b shows a steady decrease
in both training and validation loss, confirming effective
learning with minimal overfitting.

This study consolidates the performance of the proposed
SNN-CNN framework for ECG-based authentication in oT
telehealth, highlighting its resource efficiency, accuracy,
reliability, and adaptability, with results demonstrated
through comprehensive figures.

The confusion matrix in Fig. 9 grounds the precision,
recall, and F1-score to nearly 100 %. The confusion matrix
shows patient information in a diagonal matrix form and
denotes that the total person strength has been estimated
correctly. It is used to visually represent the performance

of the classification model by showing how well predicted
labels match the actual person classes. A perfect or near-
perfect diagonal pattern indicates the model accuracy in
correctly identifying each class without confusion. Several
samples predicted by the model are given in Fig. 10, which
shows the applicability of the model for distinguishing
between instances.

The Receiver Operating Characteristic (ROC) curve
can then be used to evaluate the model effectiveness in
user authentication with ECG data in terms of decision
thresholds. The AUC is an estimate of the overall model
performance. This indirectly provides a possibility of
selecting an optimal decision point depending on the needs
of a particular application having both sensitivity and
specificity in trade off. If your model ROC curve is located
near the top left corner, you have a strong model that is
great at both high sensitivity and specificity. Fig. 11 shows
performance of the proposed model at threshold value.

The performance of the proposed model is 98.8 %
based on main parameters and significantly higher than
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Fig. 10. Predicted samples from authentication (CNN) model
Table. Performance comparison of the proposed model and other models
Publication Database Methods Accuracy, %

[38] PhysioNet Random Forest classifier 92.0
[39] ECG-ID Decision Curve Analysis 94.0
[40] ptbdb, mitdb, nsrdb Matching process 97.6
[20] MIT-BIH Feed-Forward Neural Network 95.0
[30] ECG-ID Euclidean detector 94.3
[41] ECG-ID CNN 96.6
[42] Low-cost sensors biometrics One-class classifier density estimation 98.0
[43] PTB CNN-LSTM 98.0
Proposed Solution ECG-ID SNN-CNN 98.8

the performance of the previous models. It also shows high
specificity of 0.99 %, sensitivity of 0.99 %, the AUC of
0.99 % and F1-score of 0.99 %. From the results, we see
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Fig. 11. Predicted samples from authentication (CNN) model

that it is efficient for ECG based authentication and could
be better than other advanced algorithms. The reliability
and accuracy of the model may radically change the
existing ECG-based authentication systems, primarily in
security fields. Table above indicates a comparison of the
proposed model with other architectures.

Conclusion

The proposed methodology introduces a significant
advancement in Electrocardiogram (ECG)-based biometric
systems for real-time authentication in IoT telehealth
applications. By integrating a Siamese Neural Network
for verification and a Convolutional Neural Networks
for authentication, this hybrid approach enhances system
reliability, security, and adaptability. Unique biometric
signatures, resistant to replication or theft, offer superior
security compared to traditional methods.

Separating authentication and verification models
provides flexibility, scalability, and optimized performance
across diverse scenarios. Lightweight models suit resource-
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constrained settings, while advanced models cater to high-
security environments. This modularity minimizes errors,
supports targeted optimization, and facilitates continuous
improvement.

Future research could explore handling noisy ECG
signals, integrating multi-modal biometrics, implementing
wearable sensors, and applying the model to secure
governmental or military domains. Another key direction
involves leveraging the two separate models for solving

References

1. Suran Melissa. Increased use of medicare telehealth during the
pandemic. JAMA, 2022, vol. 327, no. 4, pp. 313. https://doi.
org/10.1001/jama.2021.23332

2. Marquez G., Astudillo H., Taramasco C. Security in telehealth
systems from a software engineering viewpoint: a systematic mapping
study. JEEE Access, 2020, vol. 8, pp. 10933-10950. https://doi.
org/10.1109/access.2020.2964988

3. Watzlaf VJ.M., Zhou L., DeAlmeida D., Hartman L.M. A systematic
review of research studies examining telehealth privacy and security

practices used by healthcare providers. International Journal of

Telerehabilitation, 2017, vol. 9, no. 2, pp. 39-59. https://doi.
org/10.5195/1JT.2017.6231
4. Yousuf T., Mahmoud R., Aloul F., Zualkernan 1. Internet of Things
(IoT) Security: current status, challenges and countermeasures.
International Journal for Information Security Research, 2015, vol. 5,
no. 4, pp. 608-616. https://doi.org/10.20533/ijisr.2042.4639.2015.0070
5. Zhou L., Thieret R., Watzlaf V., Fahima., Dealmeida D., Parmanto B.
A telehealth privacy and security self-assessment questionnaire for
telehealth providers: development and validation. International
Journal of Telerehabilitation, 2019, vol. 11, no. 1, pp. 3—14. https://
doi.org/10.5195/1jt.2019.6276
6. Sodhro A.H., Sennersten C., Ahmad A. Towards cognitive
authentication for smart healthcare applications. Sensors, 2022,
vol. 22, no. 6, pp. 2101. https://doi.org/10.3390/522062101
7. Khan H., Jan Z.H., Ullah I., Alwabli A., Alharbi F., Habib S.,
Islam M., Shin B.J., Lee M.Y., Koo J. A deep dive into Al integration
and advanced nanobiosensor technologies for enhanced bacterial
infection monitoring. Nanotechnology Reviews, 2024, vol. 13, no. 1,
pp. 20240056. https://doi.org/10.1515/ntrev-2024-0056
8. Barros A., Rosario D., Resque P., Cerqueira E. Heart of [oT: ECG as
biometric sign for authentication and identification. Proc. of the 15t
International Wireless Communications & Mobile Computing
Conference (IWCMC), 2019, pp. 307-312. https://doi.org/10.1109/
iwemc.2019.8766495
9. Kim S.-K., Yeun C.Y., Damiani E., Lo N.W. A machine learning
framework for biometric authentication using electrocardiogram.
IEEE Access, 2019, vol. 7, pp. 94858-94868. https://doi.org/10.1109/
access.2019.2927079
10. Rehman 1.U., Ullah 1., Khan H., Guellil M.S., Koo J., Min J.,
Habib S., Islam M., Lee M.Y. A comprehensive systematic literature
review of ML in nanotechnology for sustainable development.
Nanotechnology Reviews, 2024, vol. 13, no. 1, pp. 20240069. https://
doi.org/10.1515/ntrev-2024-0069
11. Ibtehaz N., Chowdhury M.E.H., Khandakar A., Kiranyaz S.,
Rahman M.S., Tahir A., Qiblawey Y., Rahman T. EDITH: ECG
biometrics aided by deep learning for reliable individual
authentication. /EEE Transactions on Emerging Topics in
Computational Intelligence, 2022, vol. 6, no. 4, pp. 928-940. https://
doi.org/10.1109/tetci.2021.3131374
12. Asadifam S., Talebi M.J., Nikougoftar E. ECG-based authentication
systems: a comprehensive and systematic review. Multimedia Tools
and Applications, 2024, vol. 82, no. 9, pp. 27647-27701. https://doi.
org/10.1007/s11042-023-16506-3
13. Shdefat, A.Y., Mostafa, N., Saker, L., Topcu, A. A survey study of the
current challenges and opportunities of deploying the ECG biometric
authentication method in IoT and 5G environments. /ndonesian
Journal of Electrical Engineering and Informatics, 2021. vol. 9, no. 2,
pp. 394-416. https://doi.org/10.52549/ijeei.v9i2.2890
14. LiL., Chen C., Pan L., Zhang L.Y., Wang Z.F., Zhang J., Xiang Y. A
survey of PPG’s application in authentication. Computers & Security,

Open-Set Recognition challenges, ensuring accurate
identification of known users while effectively rejecting
unfamiliar subjects. Testing on a large ECG dataset
demonstrated high accuracy, leveraging preprocessing
techniques like filtering and normalization. Advanced
architectures and expanded applications to other
physiological signals, such as photoplethysmography and
electroencephalography, could further enhance the model
versatility.

Jluteparypa

1. Suran Melissa. Increased use of medicare telehealth during the
pandemic // JAMA. 2022. V. 327. N 4. P. 313. https://doi.org/10.1001/
jama.2021.23332

2. Marquez G., Astudillo H., Taramasco C. Security in telehealth
systems from a software engineering viewpoint: a systematic mapping
study // IEEE Access. 2020. V. 8. P. 10933-10950. https://doi.
org/10.1109/access.2020.2964988

3. Watzlaf V.J.M., Zhou L., DeAlmeida D., Hartman L.M. A systematic
review of research studies examining telehealth privacy and security
practices used by healthcare providers // International Journal of
Telerehabilitation. 2017. V. 9. N 2. P. 39-59. https://doi.org/10.5195/
1JT.2017.6231

4. Yousuf T., Mahmoud R., Aloul F., Zualkernan 1. Internet of Things
(IoT) Security: current status, challenges and countermeasures //
International Journal for Information Security Research. 2015. V. 5.
N 4. P. 608—616. https://doi.org/10.20533/ijisr.2042.4639.2015.0070

5. Zhou L., Thieret R., Watzlaf V., Fahima., Dealmeida D., Parmanto B.
A telehealth privacy and security self-assessment questionnaire for
telehealth providers: development and validation // International
Journal of Telerehabilitation. 2019. V. 11. N 1. P. 3—14. https://doi.
org/10.5195/ijt.2019.6276

6. Sodhro A.H., Sennersten C., Ahmad A. Towards cognitive
authentication for smart healthcare applications // Sensors. 2022.
V.22.N 6. P. 2101. https://doi.org/10.3390/s22062101

7. Khan H., Jan Z.H., Ullah 1., Alwabli A., Alharbi F., Habib S.,
Islam M., Shin B.J., Lee M.Y., Koo J. A deep dive into Al integration
and advanced nanobiosensor technologies for enhanced bacterial
infection monitoring // Nanotechnology Reviews. 2024. V. 13. N 1.
P. 20240056. https://doi.org/10.1515/ntrev-2024-0056

8. Barros A., Rosario D., Resque P., Cerqueira E. Heart of IoT: ECG as
biometric sign for authentication and identification // Proc. of the 15t
International Wireless Communications & Mobile Computing
Conference (IWCMC). 2019. P. 307-312. https://doi.org/10.1109/
iweme.2019.8766495

9. Kim S.-K., Yeun C.Y., Damiani E., Lo N.W. A machine learning
framework for biometric authentication using electrocardiogram //
IEEE Access. 2019. V. 7. P. 94858-94868. https://doi.org/10.1109/
access.2019.2927079

10. Rehman 1.U., Ullah 1., Khan H., Guellil M.S., Koo J., Min J.,
Habib S., Islam M., Lee M.Y. A comprehensive systematic literature
review of ML in nanotechnology for sustainable development //
Nanotechnology Reviews. 2024. V. 13. N 1. P. 20240069. https://doi.
org/10.1515/ntrev-2024-0069

11. Ibtehaz N., Chowdhury M.E.H., Khandakar A., Kiranyaz S.,
Rahman M.S., Tahir A., Qiblawey Y., Rahman T. EDITH: ECG
biometrics aided by deep learning for reliable individual
authentication // IEEE Transactions on Emerging Topics in
Computational Intelligence. 2022. V. 6. N 4. P. 928-940. https://doi.
org/10.1109/tetci.2021.3131374

12. Asadifam S., Talebi M.J., Nikougoftar E. ECG-based authentication
systems: a comprehensive and systematic review // Multimedia Tools
and Applications. 2024. V. 82. N 9. P. 27647-27701. https://doi.
org/10.1007/s11042-023-16506-3

13. Shdefat, A.Y., Mostafa, N., Saker, L., Topcu, A. A survey study of the
current challenges and opportunities of deploying the ECG biometric
authentication method in IoT and 5G environments // Indonesian
Journal of Electrical Engineering and Informatics. 2021. V. 9. N 2.
P. 394-416. https://doi.org/10.52549/ijeei.v9i2.2890

14. LiL., Chen C., Pan L., Zhang L.Y., Wang Z.F., Zhang J., Xiang Y. A
survey of PPG’s application in authentication // Computers &

484

Hay4yHOo-TexHn4eckuii BECTHUK MHPOPMALMOHHBLIX TEXHONOMMIA, MeXaHuKn 1 ontukn, 2025, Tom 25, N2 3
Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2025, vol. 25, no 3


https://doi.org/10.1001/jama.2021.23332
https://doi.org/10.1001/jama.2021.23332
https://doi.org/10.1109/access.2020.2964988
https://doi.org/10.1109/access.2020.2964988
https://doi.org/10.5195/IJT.2017.6231
https://doi.org/10.5195/IJT.2017.6231
https://doi.org/10.20533/ijisr.2042.4639.2015.0070
https://doi.org/10.5195/ijt.2019.6276
https://doi.org/10.5195/ijt.2019.6276
https://doi.org/10.3390/s22062101
https://doi.org/10.1515/ntrev-2024-0056
https://doi.org/10.1109/iwcmc.2019.8766495
https://doi.org/10.1109/iwcmc.2019.8766495
https://doi.org/10.1109/access.2019.2927079
https://doi.org/10.1109/access.2019.2927079
https://doi.org/10.1515/ntrev-2024-0069
https://doi.org/10.1515/ntrev-2024-0069
https://doi.org/10.1109/tetci.2021.3131374
https://doi.org/10.1109/tetci.2021.3131374
https://doi.org/10.1007/s11042-023-16506-3
https://doi.org/10.1007/s11042-023-16506-3
https://doi.org/10.52549/ijeei.v9i2.2890
https://doi.org/10.1001/jama.2021.23332
https://doi.org/10.1001/jama.2021.23332
https://doi.org/10.1109/access.2020.2964988
https://doi.org/10.1109/access.2020.2964988
https://doi.org/10.5195/IJT.2017.6231
https://doi.org/10.5195/IJT.2017.6231
https://doi.org/10.20533/ijisr.2042.4639.2015.0070
https://doi.org/10.5195/ijt.2019.6276
https://doi.org/10.5195/ijt.2019.6276
https://doi.org/10.3390/s22062101
https://doi.org/10.1515/ntrev-2024-0056
https://doi.org/10.1109/iwcmc.2019.8766495
https://doi.org/10.1109/iwcmc.2019.8766495
https://doi.org/10.1109/access.2019.2927079
https://doi.org/10.1109/access.2019.2927079
https://doi.org/10.1515/ntrev-2024-0069
https://doi.org/10.1515/ntrev-2024-0069
https://doi.org/10.1109/tetci.2021.3131374
https://doi.org/10.1109/tetci.2021.3131374
https://doi.org/10.1007/s11042-023-16506-3
https://doi.org/10.1007/s11042-023-16506-3
https://doi.org/10.52549/ijeei.v9i2.2890

M.A.E. Azab

16.

17.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

2023, vol. 135, pp. 103488. https://doi.org/10.1016/j.
c0se.2023.103488

. Pereira T.M.C., Conceigao R.C., Sencadas V., Sebastido R. Biometric

recognition: a systematic review on electrocardiogram data
acquisition methods. Sensors, 2023, vol. 23, no. 3, pp. 1507. https://
doi.org/10.3390/s23031507

Hammad M., Plawiak P., Wang K.Q., Acharya U.R. ResNet-Attention
model for human authentication using ECG signals. Expert Systems,
2021, vol. 38, no. 6, pp. €12547. https://doi.org/10.1111/exsy.12547
Labati R.D., Mufioz E., Piuri V., Sassi R., Scotti F. Deep-ECG:
convolutional neural networks for ECG biometric recognition.
Pattern Recognition Letters, 2019, vol. 126, pp. 78-85. https://doi.
org/10.1016/j.patrec.2018.03.028

. Tirado-Martin P., Sanchez-Rello R. BioEcg: Improving ECG

biometrics with deep learning and enhanced datasets. Applied
Sciences, 2021, vol. 11, no. 13, pp. 5880. https://doi.org/10.3390/
app11135880

. D’angelis O., Bacco L., Vollero L., Merone M. Advancing ECG

biometrics through vision transformers: a confidence-driven
approach. IEEE Access, 2023, vol. 11, pp. 140710-140721. https://
doi.org/10.1109/ACCESS.2023.3338191

Alduwaile D., Islam M.S. Single heartbeat ECG biometric recognition
using convolutional neural network. Proc. of the International
Conference on Advanced Science and Engineering (ICOASE), 2020,
pp. 145-150. https://doi.org/10.1109/ICOASES1841.2020.9436592
Ivanciu L., Ivanciu I.A., Farago P., Roman M., Hintea S. An ECG-
based authentication system using siamese neural networks. Journal
of Medical and Biological Engineering, 2021, vol. 41, no. 4, pp. 558—
570. https://doi.org/10.1007/s40846-021-00637-9

Albuquerque S.L., Misoso C.J., da Rocha A.F., Gondim P.R.L.
Authentication based on electrocardiography signals and machine
learning. Engineering Research Express, 2021, vol. 3, no. 2,
pp. 023504. https://doi.org/10.1088/2631-8695/abffab

Al Alkeem, E., Yeun C.Y., Yun J., Yoo P.D., Chae M., Rahman A.,
Asyhari A.T. Robust deep identification using ECG and multimodal
biometrics for industrial internet of things. Ad Hoc Networks, 2021,
vol. 121, pp. 102581. https://doi.org/10.1016/j.adhoc.2021.102581
Ahmad 1., Yao C., Li L., Chen Y., Liu Z., Ullah 1., Shabaz M.,
Wang X., Huang K., Li G., Zhao G., Samuel O.W., Chen S. An
efficient feature selection and explainable classification method for
EEG-based epileptic seizure detection. Journal of Information
Security and Applications, 2024, vol. 80, pp. 103654. https://doi.
org/10.1016/j.jisa.2023.103654

Jamin A., Humeau-Heurtier A. (Multiscale) cross-entropy methods:
areview. Entropy, 2019, vol. 22, no. 1, pp. 45. https://doi.org/10.3390/
€22010045

Dominguez-Bolafio T., Campos O., Barral V., Escudero C.J., Garcia-
Naya J.A. An overview of IoT architectures, technologies, and
existing open-source projects. Internet of Things, 2022, vol. 20,
pp. 100626. https://doi.org/10.1016/j.i0t.2022.100626

Pourghebleh B., Wakil K., Navimipour N.J. A comprehensive study
on the trust management techniques in the Internet of Things. /EEE
Internet of Things Journal, 2019, vol. 6, no. 6, pp. 9626-9337. https://
doi.org/10.1109/ji0t.2019.2933518

Sharma P., Jain S., Gupta S., Chamola V. Role of machine learning
and deep learning in securing 5G-driven industrial IoT applications.
Ad Hoc Networks, 2021, vol. 123, pp. 102685. https://doi.
org/10.1016/j.adhoc.2021.102685

Dogo E.M., Afolabi O.J., Nwulu N.I., Twala B., Aigbavboa C.O. A
comparative analysis of gradient descent-based optimization
algorithms on convolutional neural networks. Proc. of the
International Conference on Computational Techniques, Electronics
and Mechanical Systems (CTEMS), 2018, pp. 92-99. https://doi.
org/10.1109/ctems.2018.8769211

Tyagi P.K., Agrawal D. Automatic detection of sleep apnea from
single-lead ECG signal using enhanced-deep belief network model.
Biomedical Signal Processing and Control, 2023, vol. 80, part 2,
pp. 104401. https://doi.org/10.1016/j.bspc.2022.104401

Bento N., Belo D., Gamboa H. ECG biometrics using spectrograms
and deep neural networks. International Journal of Machine Learning
and Computing, 2020, vol. 10, no. 2, pp. 259-264. https://doi.
org/10.18178/ijmlc.2020.10.2.929

Zhou D.-X. Deep distributed convolutional neural networks:
Universality. Analysis and Applications, 2018, vol. 16, no. 6, pp. 895—
919. https://doi.org/10.1142/s0219530518500124

15.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

Security. 2023. V. 135. P. 103488. https://doi.org/10.1016/j.
cose.2023.103488

Pereira TM.C., Conceig¢do R.C., Sencadas V., Sebastido R. Biometric
recognition: a systematic review on electrocardiogram data
acquisition methods // Sensors. 2023. V. 23. N 3. P. 1507. https://doi.
org/10.3390/523031507

. Hammad M., Plawiak P., Wang K.Q., Acharya U.R. ResNet-Attention

model for human authentication using ECG signals // Expert Systems.
2021. V. 38. N 6. P. e12547. https://doi.org/10.1111/exsy.12547

. Labati R.D., Mufoz E., Piuri V., Sassi R., Scotti F. Deep-ECG:

convolutional neural networks for ECG biometric recognition //
Pattern Recognition Letters. 2019. V. 126. P. 78-85. https://doi.
org/10.1016/j.patrec.2018.03.028

Tirado-Martin P., Sanchez-Rello R. BioEcg: Improving ECG
biometrics with deep learning and enhanced datasets // Applied
Sciences. 2021. V. 11. N 13. P. 5880. https://doi.org/10.3390/
app11135880

D’angelis O., Bacco L., Vollero L., Merone M. Advancing ECG
biometrics through vision transformers: a confidence-driven
approach // IEEE Access. 2023. V. 11. P. 140710-140721. https://doi.
org/10.1109/ACCESS.2023.3338191

Alduwaile D., Islam M.S. Single heartbeat ECG biometric recognition
using convolutional neural network // Proc. of the International
Conference on Advanced Science and Engineering (ICOASE). 2020.
P. 145-150. https://doi.org/10.1109/ICOASES51841.2020.9436592
Ivanciu L., Ivanciu .A., Farago P., Roman M., Hintea S. An ECG-
based authentication system using siamese neural networks // Journal
of Medical and Biological Engineering. 2021. V. 41. N 4. P. 558-570.
https://doi.org/10.1007/s40846-021-00637-9

Albuquerque S.L., Misoso C.J., da Rocha A.F., Gondim P.R.L.
Authentication based on electrocardiography signals and machine
learning // Engineering Research Express. 2021. V. 3. N 2. P. 023504.
https://doi.org/10.1088/2631-8695/abffa6

Al Alkeem, E., Yeun C.Y., Yun J., Yoo P.D., Chaec M., Rahman A.,
Asyhari A.T. Robust deep identification using ECG and multimodal
biometrics for industrial internet of things // Ad Hoc Networks, 2021,
V. 121. P. 102581. https://doi.org/10.1016/j.adhoc.2021.102581
Ahmad 1., Yao C., Li L., Chen Y., Liu Z., Ullah I., Shabaz M.,
Wang X., Huang K., Li G., Zhao G., Samuel O.W., Chen S. An
efficient feature selection and explainable classification method for
EEG-based epileptic seizure detection // Journal of Information
Security and Applications. 2024. V. 80. P. 103654. https://doi.
org/10.1016/j.jisa.2023.103654

Jamin A., Humeau-Heurtier A. (Multiscale) cross-entropy methods:
a review // Entropy. 2019. V. 22. N 1. P. 45. https://doi.org/10.3390/
€22010045

Dominguez-Bolafio T., Campos O., Barral V., Escudero C.J., Garcia-
Naya J.A. An overview of IoT architectures, technologies, and
existing open-source projects // Internet of Things. 2022. V. 20.
P. 100626. https://doi.org/10.1016/].10t.2022.100626

Pourghebleh B., Wakil K., Navimipour N.J. A comprehensive study
on the trust management techniques in the Internet of Things // IEEE
Internet of Things Journal. 2019. V. 6. N 6. P. 9626-9337. https://doi.
org/10.1109/ji0t.2019.2933518

Sharma P., Jain S., Gupta S., Chamola V. Role of machine learning
and deep learning in securing 5G-driven industrial IoT applications
/I Ad Hoc Networks. 2021. V. 123. P. 102685. https://doi.
org/10.1016/j.adhoc.2021.102685

Dogo E.M., Afolabi O.J., Nwulu N.I., Twala B., Aigbavboa C.O. A
comparative analysis of gradient descent-based optimization
algorithms on convolutional neural networks // Proc. of the
International Conference on Computational Techniques, Electronics
and Mechanical Systems (CTEMS). 2018. P. 92-99. https://doi.
org/10.1109/ctems.2018.8769211

Tyagi P.K., Agrawal D. Automatic detection of sleep apnea from
single-lead ECG signal using enhanced-deep belief network model //
Biomedical Signal Processing and Control. 2023. V. 80. Part 2.
P. 104401. https://doi.org/10.1016/j.bspc.2022.104401

Bento N., Belo D., Gamboa H. ECG biometrics using spectrograms
and deep neural networks // International Journal of Machine
Learning and Computing. 2020. V. 10. N 2. P. 259-264. https://doi.
org/10.18178/ijm1c.2020.10.2.929

Zhou D.-X. Deep distributed convolutional neural networks:
Universality // Analysis and Applications. 2018. V. 16. N 6. P. 895—
919. https://doi.org/10.1142/30219530518500124

Hay4HO-TexXHU4eCcKuii BECTHUK MHDOPMALIMOHHbLIX TEXHONOM A, MeXaHUkn 1 ontukun, 2025, Tom 25, N2 3
Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2025, vol. 25, no 3

485


https://doi.org/10.1016/j.cose.2023.103488
https://doi.org/10.1016/j.cose.2023.103488
https://doi.org/10.3390/s23031507
https://doi.org/10.3390/s23031507
https://doi.org/10.1111/exsy.12547
https://doi.org/10.1016/j.patrec.2018.03.028
https://doi.org/10.1016/j.patrec.2018.03.028
https://doi.org/10.3390/app11135880
https://doi.org/10.3390/app11135880
https://doi.org/10.1109/ACCESS.2023.3338191
https://doi.org/10.1109/ACCESS.2023.3338191
https://doi.org/10.1109/ICOASE51841.2020.9436592
https://doi.org/10.1007/s40846-021-00637-9
https://doi.org/10.1088/2631-8695/abffa6
https://doi.org/10.1016/j.adhoc.2021.102581
https://doi.org/10.1016/j.jisa.2023.103654
https://doi.org/10.1016/j.jisa.2023.103654
https://doi.org/10.3390/e22010045
https://doi.org/10.3390/e22010045
https://doi.org/10.1016/j.iot.2022.100626
https://doi.org/10.1109/jiot.2019.2933518
https://doi.org/10.1109/jiot.2019.2933518
https://doi.org/10.1016/j.adhoc.2021.102685
https://doi.org/10.1016/j.adhoc.2021.102685
https://doi.org/10.1109/ctems.2018.8769211
https://doi.org/10.1109/ctems.2018.8769211
https://doi.org/10.1016/j.bspc.2022.104401
https://doi.org/10.18178/ijmlc.2020.10.2.929
https://doi.org/10.18178/ijmlc.2020.10.2.929
https://doi.org/10.1142/s0219530518500124
https://doi.org/10.1016/j.cose.2023.103488
https://doi.org/10.1016/j.cose.2023.103488
https://doi.org/10.3390/s23031507
https://doi.org/10.3390/s23031507
https://doi.org/10.1111/exsy.12547
https://doi.org/10.1016/j.patrec.2018.03.028
https://doi.org/10.1016/j.patrec.2018.03.028
https://doi.org/10.3390/app11135880
https://doi.org/10.3390/app11135880
https://doi.org/10.1109/ACCESS.2023.3338191
https://doi.org/10.1109/ACCESS.2023.3338191
https://doi.org/10.1109/ICOASE51841.2020.9436592
https://doi.org/10.1007/s40846-021-00637-9
https://doi.org/10.1088/2631-8695/abffa6
https://doi.org/10.1016/j.adhoc.2021.102581
https://doi.org/10.1016/j.jisa.2023.103654
https://doi.org/10.1016/j.jisa.2023.103654
https://doi.org/10.3390/e22010045
https://doi.org/10.3390/e22010045
https://doi.org/10.1016/j.iot.2022.100626
https://doi.org/10.1109/jiot.2019.2933518
https://doi.org/10.1109/jiot.2019.2933518
https://doi.org/10.1016/j.adhoc.2021.102685
https://doi.org/10.1016/j.adhoc.2021.102685
https://doi.org/10.1109/ctems.2018.8769211
https://doi.org/10.1109/ctems.2018.8769211
https://doi.org/10.1016/j.bspc.2022.104401
https://doi.org/10.18178/ijmlc.2020.10.2.929
https://doi.org/10.18178/ijmlc.2020.10.2.929
https://doi.org/10.1142/s0219530518500124

A deep learning approach for adaptive electrocardiogram-based authentication in an internet of things enabled...

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

Sainath T.N., Kingsbury B., Saon G., Soltau H., Mohamed A.R.,
Dahl G., Ramabhadran B. Deep convolutional neural networks for
Large-scale speech tasks. Neural Networks, 2015, vol. 64, pp. 39-48.
https://doi.org/10.1016/j.neunet.2014.08.005

Khan A., Sohail A., Zahoora U., Qureshi A.S. A survey of the recent
architectures of deep convolutional neural networks. Artificial
Intelligence Review, 2020, vol. 53, no. 8, pp. 5455-5516. https://doi.
org/10.1007/s10462-020-09825-6

Lodhi B., Kang J. Multipath-DenseNet: A Supervised ensemble
architecture of densely connected convolutional networks.
Information Sciences, 2019, vol. 482, pp. 63—72. https://doi.
org/10.1016/j.ins.2019.01.012

Kanatov M., Atymtayeva L., Mendes M. Improved Facial Expression
Recognition with xception deep net and preprocessed images. Applied
Mathematics & Information Sciences, 2019, vol. 13, no. 5, pp. 859—
865. https://doi.org/10.18576/amis/130520

Zhang Y., Wu J. Practical human authentication method based on
piecewise corrected Electrocardiogram. Proc. of the 7th [EEE
International Conference on Software Engineering and Service
Sciences (ICSESS), 2016, pp. 300-303. https://doi.org/10.1109/
icsess.2016.7883071

Nwankpa C., [jomah W., Gachagan A., Marshall S. Activation
Functions: Comparison of Trends in Practice and Research for Deep
Learning. arXiv, 2018, arxiv.org/abs/1811.03378v1. https://doi.
org/10.48550/arXiv.1811.03378

Barros A., Resque P., Almeida J., Mota R., Oliveira H., Rosario D.,
Cerqueira E. Data improvement model based on ECG biometric for
user authentication and identification. Sensors, 2020, vol. 20, no. 10,
pp- 2920. https://doi.org/10.3390/s20102920

Su K., Yang G., Wu B., Yang L., Li D., Su P,, Yin Y. Human
identification using finger vein and ECG signals. Neurocomputing,
2019, vol. 332, pp. 111-118. https://doi.org/10.1016/j.
neucom.2018.12.015

Zhao Z., Zhang Y., Deng Y., Zhang X. ECG authentication system
design incorporating a convolutional neural network and generalized
S-Transformation. Computers in Biology and Medicine, 2018,
vol. 102, pp. 168-179. https://doi.org/10.1016/j.
compbiomed.2018.09.027

Blasco J., Peris-Lopez P. On the feasibility of low-cost wearable
Sensors for multi-modal biometric verification. Sensors, 2018,
vol. 18, no. 9, pp. 2782. https://doi.org/10.3390/s18092782

Agrawal V., Hazratifard M., Elmiligi H., Gebali F. Electrocardiogram
(ECG)-based user authentication using deep learning algorithms.
Diagnostics, 2023, vol. 13, no. 3, pp. 439. https://doi.org/10.3390/
diagnostics13030439

Author

Mohamed Abdalla Elsayed Azab — PhD Student, ITMO University,
Saint Petersburg, 197101, Russian Federation, https://orcid.org/0009-
0000-1748-0029, mohamed.a.azab@jitmo.ru

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

Sainath T.N., Kingsbury B., Saon G., Soltau H., Mohamed A.R., Dahl
G., Ramabhadran B. Deep convolutional neural networks for Large-
scale speech tasks // Neural Networks. 2015. V. 64. P. 39-48. https:/
doi.org/10.1016/j.neunet.2014.08.005

Khan A., Sohail A., Zahoora U., Qureshi A.S. A survey of the recent
architectures of deep convolutional neural networks // Artificial
Intelligence Review. 2020. V. 53. N 8. P. 5455-5516 https://doi.
org/10.1007/s10462-020-09825-6

Lodhi B., Kang J. Multipath-DenseNet: A Supervised ensemble
architecture of densely connected convolutional networks //
Information Sciences. 2019. V. 482. P. 63—72. https://doi.
org/10.1016/1.in5.2019.01.012

Kanatov M., Atymtayeva L., Mendes M. Improved Facial Expression
Recognition with xception deep net and preprocessed images //
Applied Mathematics & Information Sciences. 2019. V. 13. N 5.
P. 859-865. https://doi.org/10.18576/amis/130520

Zhang Y., Wu J. Practical human authentication method based on
piecewise corrected Electrocardiogram // Proc. of the 7t IEEE
International Conference on Software Engineering and Service
Sciences (ICSESS). 2016. P. 300-303. https://doi.org/10.1109/
icsess.2016.7883071

Nwankpa C., [jomah W., Gachagan A., Marshall S. Activation
Functions: Comparison of Trends in Practice and Research for Deep
Learning // arXiv. 2018. arxiv.org/abs/1811.03378v1. https://doi.
org/10.48550/arXiv.1811.03378

Barros A., Resque P., Almeida J., Mota R., Oliveira H., Rosario D.,
Cerqueira E. Data improvement model based on ECG biometric for
user authentication and identification // Sensors. 2020. V. 20. N 10.
P. 2920. https://doi.org/10.3390/520102920

Su K., Yang G., Wu B., Yang L., Li D., Su P., Yin Y. Human
identification using finger vein and ECG signals // Neurocomputing.
2019. V. 332. P. 111-118. https://doi.org/10.1016/j.
neucom.2018.12.015

Zhao Z., Zhang Y., Deng Y., Zhang X. ECG authentication system
design incorporating a convolutional neural network and generalized
S-Transformation // Computers in Biology and Medicine. 2018.
V. 102. P. 168-179. https://doi.org/10.1016/j.
compbiomed.2018.09.027

Blasco J., Peris-Lopez P. On the feasibility of low-cost wearable
Sensors for multi-modal biometric verification // Sensors. 2018. V. 18.
N 9. P. 2782. https://doi.org/10.3390/s18092782

Agrawal V., Hazratifard M., Elmiligi H., Gebali F. Electrocardiogram
(ECG)-based user authentication using deep learning algorithms //
Diagnostics. 2023. V. 13. N 3. P. 439. https://doi.org/10.3390/
diagnostics13030439

ABTOp

A3ab Moxamen AdaaJiia abceiin — acriupant, Yausepcurer U'TMO,
Cankr-IlerepOypr, 197101, Poccuiickas ®enepanus, https://orcid.
0rg/0009-0000-1748-0029, mohamed.a.azab@jitmo.ru

Received 14.12.2024 Cmamus nocmynuna 6 peoakyuro 14.12.2024
Approved after reviewing 30.04.2025 Ooobpena nocne peyenzuposarnus 30.04.2025
Accepted 26.05.2025 Ipunama x neuamu 26.05.2025
® @ | PaGoTa focTynHa no nmueHsum
@ | Creative Commons
«Attribution-NonCommercial»
486 Hay4yHOo-TexHn4eckuii BECTHUK MHPOPMALMOHHBLIX TEXHONOMMIA, MeXaHuKn 1 ontukn, 2025, Tom 25, N2 3

Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2025, vol. 25, no 3


https://doi.org/10.1016/j.neunet.2014.08.005
https://doi.org/10.1007/s10462-020-09825-6
https://doi.org/10.1007/s10462-020-09825-6
https://doi.org/10.1016/j.ins.2019.01.012
https://doi.org/10.1016/j.ins.2019.01.012
https://doi.org/10.18576/amis/130520
https://doi.org/10.1109/icsess.2016.7883071
https://doi.org/10.1109/icsess.2016.7883071
http://arxiv.org/abs/1811.03378v1
https://doi.org/10.48550/arXiv.1811.03378
https://doi.org/10.48550/arXiv.1811.03378
https://doi.org/10.3390/s20102920
https://doi.org/10.1016/j.neucom.2018.12.015
https://doi.org/10.1016/j.neucom.2018.12.015
https://doi.org/10.1016/j.compbiomed.2018.09.027
https://doi.org/10.1016/j.compbiomed.2018.09.027
https://doi.org/10.3390/s18092782
https://doi.org/10.3390/diagnostics13030439
https://doi.org/10.3390/diagnostics13030439
https://orcid.org/0009-0000-1748-0029
https://orcid.org/0009-0000-1748-0029
mailto:mohamed.a.azab@itmo.ru
https://doi.org/10.1016/j.neunet.2014.08.005
https://doi.org/10.1016/j.neunet.2014.08.005
https://doi.org/10.1007/s10462-020-09825-6
https://doi.org/10.1007/s10462-020-09825-6
https://doi.org/10.1016/j.ins.2019.01.012
https://doi.org/10.1016/j.ins.2019.01.012
https://doi.org/10.18576/amis/130520
https://doi.org/10.1109/icsess.2016.7883071
https://doi.org/10.1109/icsess.2016.7883071
http://arxiv.org/abs/1811.03378v1
https://doi.org/10.48550/arXiv.1811.03378
https://doi.org/10.48550/arXiv.1811.03378
https://doi.org/10.3390/s20102920
https://doi.org/10.1016/j.neucom.2018.12.015
https://doi.org/10.1016/j.neucom.2018.12.015
https://doi.org/10.1016/j.compbiomed.2018.09.027
https://doi.org/10.1016/j.compbiomed.2018.09.027
https://doi.org/10.3390/s18092782
https://doi.org/10.3390/diagnostics13030439
https://doi.org/10.3390/diagnostics13030439
https://orcid.org/0009-0000-1748-0029
https://orcid.org/0009-0000-1748-0029
mailto:mohamed.a.azab@itmo.ru

