УДК 004.852

РЕГИОНАЛЬНАЯ ДЕМОГРАФИЧЕСКАЯ МОДЕЛЬ РАСПРОСТРАНЕНИЯ НАРКОМАНИИ

С.А. Митягин, Ю.Н. Захаров, А.В. Бухановский, П.М.А. Слоот

Рассматривается региональная математическая модель прогнозирования численности населения и распространения наркомании, предназначенная для изучения структуры, состояния и динамики наркоситуации в целях оперативного анализа и прогноза возможных тенденций ее развития. Параметры модели оцениваются на основе экономического и психологического состояния общества, что позволяет получить долгосрочный прогноз развития наркоситуации при различных сценариях социально-экономического развития региона.

Ключевые слова: наркоситуация, марковская модель, мониторинг, демографическая ситуация, сценарий развития.

Введение

Мониторинг и анализ наркоситуации на данный момент являются одними из самых актуальных вопросов государственной антинаркотической политики и деятельности по противодействию незаконному обороту наркотиков и распространению наркомании [1–3]. Специфика исследований в данной области заключается в скрытом и криминальном характере процесса распространения наркомании, который недоступен для непосредственного наблюдения. Данные особенности требуют применения комплексных методов оценки и анализа наркоситуации, основанных на наблюдении процессов, характеризующих уровень развития наркомании на рассматриваемой территории. Таким образом, существует необходимость разработки аппарата математического моделирования рассматриваемых процессов с учетом причинно-следственных связей между наркоманией и отображаемыми ею факторами [4]. Решение данной задачи позволяет прогнозировать развитие наркоситуации в зависимости от общей социальной, экономической, психологической и политической обстановки на территории, что, в свою очередь, является важнейшей составляющей планирования работ по противодействию незаконному обороту наркотиков и развитию наркомании. В настоящей работе рассматривается подход к моделированию распространения наркомании на основе региональной демографической модели для Санкт-Петербурга.

Математическая модель динамики наркоситуации

Одним из подходов к моделированию социальных процессов является применение демографических матричных моделей, действие которых основано на предсказании будущей возрастной структуры объекта прогнозирования по известной структуре в настоящий момент времени и коэффициентам вероятности перехода [5, 6]. Традиционной областью применения матричных моделей является прогнозирование половозрастной структуры населения на основе данных о рождаемости и смертности в регионе [7].

В литературе выделяют следующие группы населения в социальной структуре незаконного оборота наркотиков [8, 9]: население, имеющее иммунитет к наркомании (I); население, входящее в группу риска (S); наркозависимые, состоящие на учете с диагнозом синдрома зависимости от наркотических веществ (Y); лица, принимающие психоактивные вещества и не состоящие под наблюдением (X); распространители наркотических веществ (D). Это позволяет рассмотреть структуру состояний процесса распространения наркомании (рис. 1).

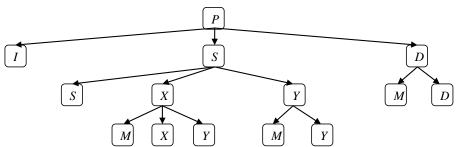


Рис. 1. Структура состояний процесса распространения наркомании

Помимо вышеуказанных обозначений на схеме приведены: общее население территории (P); лица, к которым применена мера наказания в виде лишения свободы (M). Сложность рассматриваемой модели обусловлена скрытым характером наркомании, включающим достаточно существенную латентную составляющую [10, 11], что требует комплексного подхода к оценке данного явления.

Описание переходов между состояниями рассматривается в терминах цепи Маркова. Динамика ее интегральных характеристик записывается в виде матричного уравнения

$$P_{i+1} = F_1 P_i + W_i \,, \tag{1}$$

где W_i — сальдо миграции в период i ; F_1 — матрица следующей структуры:

$$F_{1} = \begin{pmatrix} f_{b1} & f_{b2} & \cdots & f_{bn} \\ f_{1} & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & f_{n-1} \end{pmatrix}, \tag{2}$$

где первая строка содержит вероятности рождения ребенка у лиц каждого возраста, а на диагонали — вероятности лиц каждого возраста (0,...,n-1) дожить до следующего возраста.

Детализация состояний по группам населения выполняется на основе ряда закономерностей.

1. Динамика населения с иммунитетом к наркомании

$$I_{i+1} = F_2 I_i + F_3 P_i$$
, (3)

где F_2 – матрица структуры (2) для группы населения I; F_3 – диагональная матрица, элементами которой являются вероятности перехода населения каждого возраста в группу I.

2. Динамика лиц, состоящих на учете с диагнозом синдрома зависимости от наркотических веществ,

$$Y_{i+1} = F_4 Y_i + F_5 P_i - F_6 Y_i, (4)$$

где F_4 — матрица структуры (2) для группы населения Y; F_5 — диагональная матрица, элементами которой являются вероятности перехода населения каждого возраста в группу Y; F_6 — диагональная матрица, элементами которой являются вероятности быть привлеченными к уголовной ответственности для лиц из группы Y.

Динамика лиц, принимающих психоактивные вещества и не состоящих на учете

$$X_{i+1} = F_7 X_i + F_8 P_i - F_9 X_i - F_{10} X_i , (5)$$

где F_7 — матрица структуры (2) для группы населения X; F_8 — диагональная матрица, элементами которой являются вероятности перехода населения каждого возраста в группу X; F_9 — диагональная матрица, элементами которой являются вероятности быть привлеченными к уголовной ответственности для лиц из группы X; F_{10} — диагональная матрица, элементами которой являются вероятности встать на учет как наркозависимые для лиц из группы X.

4. Динамика лиц, распространяющих наркотические вещества,

$$D_{i+1} = F_{11}D_i + F_{12}P_i - F_{13}D_i, (6)$$

где F_{11} — матрица структуры (2) для группы населения D; F_{12} — диагональная матрица, элементами которой являются вероятности перехода населения каждого возраста в группу D, F_{13} — диагональная матрица, элементами которой являются вероятности для лиц из группы D быть привлеченными к уголовной ответственности.

Модель (1)–(6) зависит от матриц параметров F_1 – F_{13} , состоящих из переходных вероятностей между группами населения; их параметры получаются на основе экспертных оценок или путем обработки демографических данных по региону.

Оценка параметров модели

Рассмотрим формирование элементов управляющих матриц F_1 – F_{13} на основе факторов, характеризующих развитие наркомании. При построении прогноза структуры наркопотребителей учитываются два взаимосвязанных процесса — демографическое развитие населения и распространение наркомании на территории, которые характеризуют воспроизводство населения на территории и наркотизацию общества. Данные процессы являются взаимосвязанными, так как на них влияют общие группы факторов. В частности, в работах [11, 12] рассматривается оценивание процесса наркотизации на основе социальнодемографических индикаторов самоощущения неблагополучия, которые характеризуют поведенческие и демографические реакции населения на неблагополучие. Среди таких индикаторов выделяются:

- уровень безработицы (I_1) ;
- уровень заработных плат (I_2) ;
- концентрация доходов населения индекс Джини (I_3) ;
- число зарегистрированных браков (I_4);
- число зарегистрированных разводов (I_5) ;
- число родившихся за период (I_6) ;
- число умерших за период (I_7);
- число преступлений, совершенных несовершеннолетними (I_8) ;
- процент населения, удовлетворенного жизнью (I_9) ;
- процент населения, ясно видящего перспективы в жизни (I_{10}).

Некоторые из перечисленных показателей в значительной степени коррелируют между собой.

Корреляционный анализ структуры показателей I_1 – I_{10} свидетельствует о наличии групп факторов, совместно влияющих на уровень заболеваемости наркоманией. С целью снижения мерности и выявления

групп факторов, оказывающих наибольшее влияние на ситуацию, используем метод главных компонент. В таблице приведены значения двух первых естественных ортогональных составляющих (около 90% изменчивости) для данных I_1 — I_{10} по Санкт-Петербургу.

Главные компоненты	I_1	I_2	I_3	I_4	I_5	I_6	I_7	I_8	I_9	I_{10}
P_1	0,16	0,35	-0,33	0,33	0,25	0,33	0,34	0,31	-0,36	0,34
P_2	0,66	-0,18	-0,23	-0,26	0,52	-0,29	-0,08	0,15	0,11	0,15

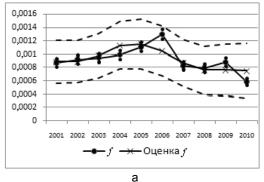
Таблица. Естественные ортогональные составляющие системы показателей $I_1,...,I_{10}$

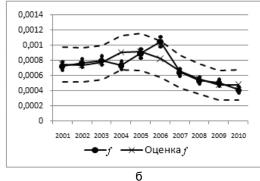
Рассмотрим зависимость вероятности заболевания наркоманией от оценок величин главных компонент P_1 , P_2 посредством применения регрессионной модели

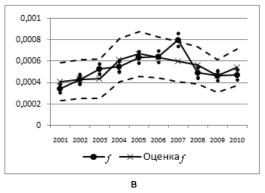
$$f_i = \theta_1 P_{1i} + \theta_2 P_{2i} + \theta_3 + \varepsilon_i, \tag{7}$$

где f_i – вероятность перехода в группу населения, употребляющего наркотики; $\theta_1,...,\theta_3$ – параметры регрессии; $\varepsilon = (\varepsilon_1,...,\varepsilon_n)^T$ – нормально распределенная ошибка с нулевым средним и дисперсией $D\varepsilon = \sigma^2 E$; E – единичная матрица. Вероятности f_i в регрессионной модели (7) оцениваются непосредственно по данным социальной статистики как

$$f_i = \frac{y_i}{s_i},\tag{8}$$


где y_i — численность впервые зарегистрированных наркозависимых соответствующего возраста за период; S_i — численность группы риска соответствующего возраста.


Таким образом, матрица оценок вероятностей перехода в группу населения, употребляющего наркотики, имеет вид


$$F_{5,i} = \begin{pmatrix} 0 & 0 & \cdots & 0 & 0 \\ f_i^1 & 0 & \cdots & 0 & 0 \\ 0 & f_i^2 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & 0 & 0 \\ 0 & 0 & 0 & f_i^{n-1} & 0 \end{pmatrix}, \tag{9}$$

где $f_i^{\ j}$ — оценки вероятностей перехода в группу наркопотребителей лиц в возрасте j за период i, которые вычисляются согласно выражению (7) на основе априорной информации о факторах I_1 – I_{10} . Структура матрицы F_8 оценивается аналогичным образом с учетом коэффициента латентности.

На рис. 2 приведены точечные оценки (8) вероятностей перехода в группу наркопотребителей для лиц группы риска и их аппроксимации регрессией (7). На приведенных графиках рассмотрены основные, наиболее характерные возрасты (16, 19, 25 и 35 лет).

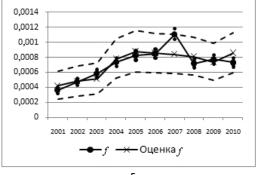


Рис. 2. Динамика вероятностей перехода в группу наркопотребителей для лиц группы риска в возрасте 15 лет (а); 18 лет (б); 25 лет (в); 35 лет (г). Данные по Санкт-Петербургу

На основе рис. 2 можно сделать вывод о том, что модель (7)–(9) достаточно точно описывает процесс развития наркомании; при этом отклонения регрессии от точечных оценок вероятности лежат в 95% доверительном интервале для точечной оценки (8), что демонстрирует достаточность использования только первых двух главных компонент показателей I_1 – I_{10} . Значения элементов остальных управляющих матриц определяются на основе показателей государственной статистики.

Прогнозирование развития наркоситуации

Оценка параметров модели (1)–(6) посредством применения уравнений регрессии (7)–(9) позволяет получить долгосрочный прогноз развития наркоситуации на основе прогноза показателей I_1 – I_{10} и оценочных значений главных компонент P_1 , P_2 , что, в свою очередь, позволяет наблюдать различные варианты прогноза масштабов наркопотребления в зависимости сценария социально-экономического развития территории. Рассмотрим демографическую структуру населения города Санкт-Петербурга в 2001, 2004, 2007 и 2010 г.г. (рис. 3).

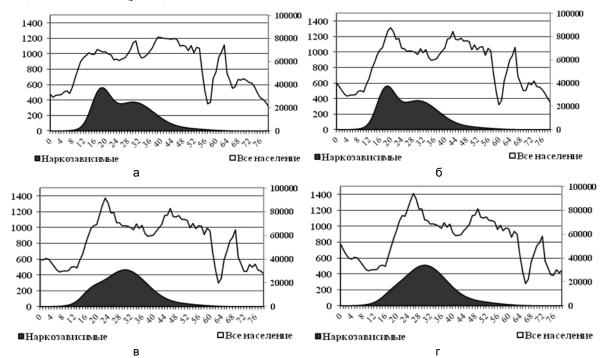


Рис. 3. Возрастная структура населения в г. Санкт-Петербурге: в 2001 году (а); в 2004 году (б); в 2010 году (г)

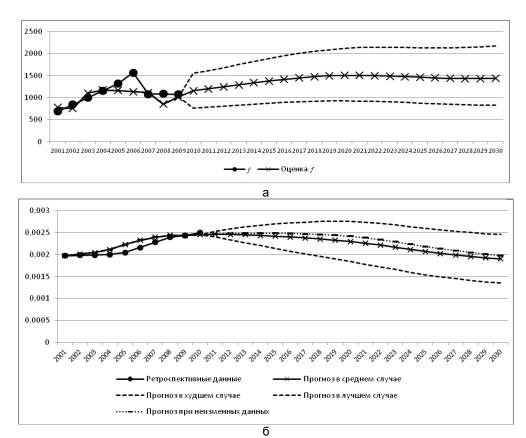


Рис. 4. Прогноз развития наркоситуации в Санкт-Петербурге: появление новых наркоманов (a); доля наркозависимых в структуре населения региона (б)

На рис. 3 можно наблюдать наличие значительного спада численности населения в возрасте 8-18 лет и пик численности населения в возрасте 25-35 — наиболее неблагоприятном с точки зрения заболеваемости наркоманией. При этом видно, что пик количества наркозависимых постепенно сдвигается в сторону больших возрастов. Это связано как со снижением рождаемости в постперестроечный период, так и с позитивным эффектом антинаркотических мероприятий: видно, что основу группы наркозависимых составляют люди, ставшие наркоманами в 90-x г.г. XX века. С целью получения долгосрочного прогноза развития наркоситуации на территории, как было отмечено выше, необходимо осуществить прогнозирование показателей I_1 — I_{10} . На рис. 4 приведен результат прогнозирования заболеваемости наркоманией в г. Санкт-Петербурге при средних значениях прогноза показателей I_1 — I_{10} .

Заключение

Полученные результаты прогноза развития наркомании иллюстрируют возможность применения модели (1)–(6) для анализа наркоситуации на территориях отдельных регионов. На основе полученных результатов можно сделать выводы о структуре и численности наркозависимых в регионе. Так предположительно, в 2011 г. численность наркозависимых в Санкт-Петербурге достигнет максимального значения, затем начнется некоторый спад регистрации новых наркоманов и снижение доли наркозависимых в общей структуре населения. Полученный эффект можно объяснить резким снижением численности населения в возрасте 8–18 лет, а именно тех лиц, которые в 2012–2014 г.г. составят большую часть группы риска по наркомании, чем объясняется снижение числа новых наркоманов. С другой стороны, население в возрасте 45–50 лет сместится в область вне группы риска, поскольку в меньшей степени будет подвержена наркотизации. Следует отметить, что использование данной модели требует учета миграции, значение которой в большой степени зависит от внешней политики. В силу этого необходимо осуществлять коррекцию параметров модели с целью увеличения достоверности прогноза.

Работа выполнена в рамках реализации постановления № 220 Правительства Российской Федерации при поддержке ФЦП «Исследования и разработки по приоритетным направлениям развития научнотехнологического комплекса России на 2007–2012 годы».

Литература

- 1. Указ Президента РФ «Об утверждении Стратегии национальной безопасности Российской Федерации до 2020 года» от 12.05.2009 № 537.
- 2. Указ Президента РФ «Об утверждении Стратегии государственной антинаркотической политики Российской Федерации до 2020 года» от 09.06.2010 № 690.
- 3. Постановление Правительства РФ «Об утверждении Положения о государственной системе мониторинга наркоситуации в Российской Федерации» от 20.06.2011 № 485.
- 4. Яковлев С.В., Гнусов Ю.В. Анализ и прогнозирование показателей наркологической статистики в Украине и в Харьковской области // Молодежь и наркотики (социология наркотизма) / Под ред. В.А. Соболева, И.П. Рущенко. Харьков: Торсинг, 2000. С. 194–221.
- 5. Аристов С.А. Имитационное моделирование экономических систем: Учебное пособие. Екатеринбург: Изд-во Урал.гос.экон.ун-та, 2004. – 124 с.
- 6. Цыбатов В.А. Модели производственного потенциала для долгосрочного прогнозирования регионального развития // Методология регионального прогнозирования. М.: СОПС, 2003. С. 114–127.
- 7. Муравей Л.А. Экология и безопасность жизнедеятельности. М.: Юнити-Дана, 2000. 445 с.
- 8. Боев Б.В. Современные этапы математического моделирования процессов развития и распространения инфекционных заболеваний // Эпидемиологическая кибернетика: модели, информация, эксперименты. М., 1991. С. 6–13.
- 9. Боев Б.В., Бондаренко В.М. Прогностическая модель распространения наркомании и ВИЧ-инфекции среди молодежи // Микробиология. 2001. № 5. С. 76–81.
- 10. Стародубов В.И., Татаркин А.И. Влияние наркомании на социально-экономические развитие общества. УрО РАН, 2006. 381 с.
- 11. Татаркин А.И., Куклин А.А. Комплексная методика диагностики качества жизни в регионе. Екатеринбург: Институт экономики УрО РАН, 2010. 136 с.
- 12. Мартынов А.С., Артюхов В.В., Виноградов В.Г. Окружающая среда и здоровье населения России.

Митягин Сергей Александрович Санкт-Петербургское государственное унитарное предприятие «Санкт-Петербургский информационно-аналитический центр», ведущий специалист-аналитик, Mityagin@iac.spb.ru Захаров Юрий Никитович Санкт-Петербургское государственное унитарное предприятие «Санкт-Петербургский информационно-аналитический центр», кандидат технических наук, профессор, директор, zaharov@iac.spb.ru Бухановский Александр Валерьевич НИИ НКТ, Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики, доктор технических наук, директор, avb_mail@mail.ru Слоот Петрус Мария Арнольдус Университет г. Амстердам, доктор философии, p.m.a.sloot@uva.n