doi: 10.17586/2226-1494-2020-20-5-722-728


УДК 004.3

КОНФИГУРИРУЕМЫЕ IOT-УСТРОЙСТВА НА ОСНОВЕ SOC-СИСТЕМ ESP8266 И ПРОТОКОЛА MQTT

Корзухин С.В., Хайдарова Р.Р., Шматков В.Н.


Читать статью полностью 
Язык статьи - русский

Ссылка для цитирования:
Корзухин С.В., Хайдарова Р.Р., Шматков В.Н. Конфигурируемые IoT-устройства на основе SoC-систем ESP8266 и протокола MQTT // Научно-технический вестник информационных технологий, механики и оптики. 2020. Т. 20. № 5. С. 722–728. doi: 10.17586/2226-1494-2020-20-5-722-728


Аннотация
Предмет исследования. Рассмотрены популярные протоколы прикладного уровня для устройств интернета вещей, использующиеся в сетях. Выполнен сравнительный анализ протоколов в контексте использования ресурсов сети и надежности передачи данных, выявлены их достоинства и недостатки применительно к использованию для передачи данных в системах интернета вещей. Проведен обзор аппаратных платформ для построения устройств интернета вещей. Большой практический интерес для создания оконечных устройств интернета вещей могут представлять SoC-системы, объединяющие на одном полупроводниковом кристалле вычислительный модуль, периферийные устройства и устройства связи. Метод. Предложен подход к построению конфигурируемого оконечного устройства интернета вещей на основе SoC-системы ESP8266. Для связи устройств с сервером управления и сбора данных применен протокол MQTT, который позволяет экономить ресурсы сети и логическим и иерархическим образом разделять устройства интернета вещей в сети. Предложена простая архитектура плат- формы на основе открытого программного обеспечения OpenHAB, MQTT-брокера Eclipse Mosquitto и протокола MQTT для объединения устройств интернета вещей в сеть. Преимуществом предложенного подхода является использование шаблонов приложений IoT-устройств. Основные результаты. Разработаны шаблоны приложе- ний сенсора и актуатора, конфигурируемые посредством WEB-интерфейса. Реализован режим точки доступа для начальной настройки устройства. Получены зависимости времени отправки и приема MQTT-сообщения в зависимости от его длины, измерено время отклика устройства на сетевые запросы и потери сетевых пакетов и MQTT-сообщений. Практическая значимость. На основе шаблона приложений созданы устройства умного светильника, моторизированных штор, датчиков освещенности, сенсор газового состава (углекислый газ, метан), сенсор температуры, давления и влажности. Измерены параметры полученных устройств, характеризующие время обработки сообщений. Построен стенд, объединяющий созданные устройства. Преимуществом использованного подхода является возможность поддержки большого количества разнообразных внешних устройств и быстрота создания нового устройства на основе готового шаблона приложения. Показано, что использованный в работе подход позволяет создавать оконечные устройства интернета вещей с приемлемыми эксплуатационными характеристиками.

Ключевые слова: IoT-устройства, сенсоры, актуаторы, MQTT, SoC

Список литературы
1. Gershenfeld N.A. When Things Start to Think. New York: Henry Holt and Company, 2000. 224 p.
2. Dragomir D., Gheorghe L., Costea S., Radovici A. A Survey on Secure Communication Protocols for IoT Systems // Proc. of the International Workshop on Secure Internet of Things (SIoT 2016). 2016. P. 49–62. doi: 10.1109/SIoT.2016.012
3. Hejazi H., Rajab H., Cinkler T., Lengyel L. Survey of platforms for massive IoT // Proc. of the IEEE International Conference on Future IoT Technologies (Future IoT 2018). 2018. doi: 10.1109/FIOT.2018.8325598
4. Polianytsia A., Starkova O., Herasymenko K. Survey of hardware IoT platforms // Proc Third International Scientific-Practical Conference Problems of Infocommunications Science and Technology (PIC S&T). 2016. P. 152–153. doi: 10.1109/INFOCOMMST.2016.7905364
5. Singh K.J., Kapoor D.S. Create Your Own Internet of Things: A survey of IoT platforms // IEEE Consumer Electronics Magazine. 2017. V. 6. N 2. P. 57–68. doi: 10.1109/MCE.2016.2640718
6. Naik N., Jenkins P. Web protocols and challenges of Web latency in the Web of Things // Proc. 8th International Conference on Ubiquitous and Future Networks (ICUFN 2016). 2016. P. 845–850. doi: 10.1109/ICUFN.2016.7537156
7. Селезнёв С.П., Яковлев В.В. Архитектура промышленных приложений IoT и протоколы AMQP, MQTT, JMS, REST, CoAP, XMPP, DDS // International Journal of Open Information Technologies. 2019. V. 7. N 5. P. 17–28.
8. Hwang H.C., Park J., Shon J.G. Design and implementation of a reliable message transmission system based on MQTT protocol in IoT // Wireless Personal Communications. 2016. V. 91. N 4. P. 1765–1777. doi: 10.1007/s11277-016-3398-2
9. Roy D.G., Mahato B., De D., Buyya R. Application-aware end-to-end delay and message loss estimation in Internet of Things (IoT) – MQTT-SN protocols // Future Generation Computer Systems. 2018. V. 89. P. 300–316. doi: 10.1016/j.future.2018.06.040
10. Naik N. Choice of effective messaging protocols for IoT systems: MQTT, CoAP, AMQP and HTTP // Proc. 3rd Annual IEEE International Symposium on Systems Engineering (ISSE 2017). 2017. P. 8088251. doi: 10.1109/SysEng.2017.8088251
11. Yokotani T., Sasaki Y. Comparison with HTTP and MQTT on required network resources for IoT // Proc. 2nd International Conference on Control, Electronics, Renewable Energy, and Communications (ICCEREC 2016). 2016. P. 7814989. doi: 10.1109/ICCEREC.2016.7814989
12. Bonetto R., Bui N., Lakkundi V., Olivereau A., Serbanati A., Rossi M. Secure communication for smart IoT objects: Protocol stacks, use cases and practical examples // Proc. 13th IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM 2012). 2012. P. 6263790. doi: 10.1109/WoWMoM.2012.6263790
13. Dinculeană D., Cheng X. Vulnerabilities and limitations of MQTT protocol used between iot devices // Applied Sciences. 2019. V. 9. N 5. P. 848. doi: 10.3390/app9050848
14. Atmoko R.A., Riantini R., Hasin M.K. IoT real time data acquisition using MQTT protocol // Journal of Physics: Conference Series. 2017. V. 853. N 1. P. 012003. doi: 10.1088/1742-6596/853/1/012003
15. Шматков В.Н., Бонковски П., Медведев Д.С., Корзухин С.В., Голендухин Д.В., Спыну С.Ф., Муромцев Д.И. Взаимодействие с устройствами Интернета вещей с использованием голосового интерфейса // Научно-технический вестник информационных технологий, механики и оптики. 2019. Т. 19. № 4. С. 714–721. doi: 10.17586/2226-1494-2019-19-4-714-721


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Информация 2001-2024 ©
Научно-технический вестник информационных технологий, механики и оптики.
Все права защищены.

Яндекс.Метрика