NANOSTRUCTURING AS A WAY FOR THERMOELECTRIC EFFICIENCY IMPROVEMENT

L. P. Bulat, L. V. Bochkov, I. A. Nefedova, R. Ahiska


Read the full article 
Article in Russian


Abstract

The urgency of thermoelectric energy conversion is proved. Perspectives of nanostructures usage as thermoelectric materials are shown. The authors have systematized and generalized the methods and investigation results of bulk nanostructure thermoelectrics based on Bi-Sb-Te solid solutions. Ways of nanoparticles fabrication and their subsequent sintering into a bulk sample, results of structure study of the received materials are shown by methods of electronic microscopy and X-ray spectroscopy, results of mechanical properties investigation. Methods of manufacturing suggested with the authors’ participation and properties of thermoelectric nanocomposites, fabricated with addition of fullerene, thermally split graphite, graphene and molybdenum disulphide are discussed. Methods for prevention of recrystallization, measurement methods of thermoelectric properties of studied nanothermoelectrics are considered, including electric and thermal conductivities, thermoemf and the figure of merit. Factors that influence on thermoelectric figure of merit, including the tunneling of carriers through interfaces between nanograins, the additional phonon scattering on nanograin borders and the energy filtration of carriers through barriers have been theoretically investigated. Mechanisms and ways for improvement of the figure of merit are determined. Experimental confirmation for thermoelectric figure of merit increase is received. Physical mechanisms of thermoelectric figure of merit increase are shown by perceptivity of nanostructures utilization. The growth of thermoelectric figure of merit means an expansion of areas for rational application of thermoelectric energy generation and thermoelectric cooling.


Keywords: thermoelectricity, thermoelectrics, nanostructures, direct energy conversion, thermoelectric figure of merit, nanocomposites, thermal conductivity, tunneling, phonon scattering on borders, energy filtration

References
1.     Thermoelectric Handbook: Macro to Nano. Ed. D.M. Row. CRC Press, 2006, 1014 p.
2.     Bulat L.P. Termoelektricheskoe preobrazovanie: sostoyanie i perspektivy [Thermoelectric conversion: status and prospects]. Avtonomnaya energetika, 2009, no. 26, pp. 54–57.
3.     Vorobiev Yu., Gonzalez-Hernandez J., Vorobiev P., Bulat L. Thermal-photovoltaic solar hybrid system for efficient solar energy conversion.Solar Energy,2006, vol. 80, no. 2, pp. 170–176. doi: 10.1016/j.solener.2005.04.022
4.     Vorobiev Y.V., Gonzalez-Hernandez J., Gorley P., Horley P., Bulat L. A new approach to hybrid systems of renewable energy utilization. In: Rivers P.N.(ed.) Leading Edge Research in Solar Energy. NY, Nova Science Publishers, 2008, pp. 147–164.
5.     Chavez-Urbiola E.A., Vorobiev Y., Bulat L.P.Solar hybrid systems with thermoelectric generators. Solar Energy, 2012, vol. 86, no. 1, pp. 369–378. doi: 10.1016/j.solener.2011.10.020
6.     Bulat L.P., Vedernikov M.V., Vyalov A.P. et. al. Termoelektricheskoe Okhlazhdenie [Thermoelectric Cooling]. St. Petersburg, SPbGUNiPT Publ., 2002, 147 p.
7.     Sergienko O.I., Bulat L.P., Kopyltsova S.Е., Shestopalova А.I., Guzhva M.E., Vinogradov A.S.Environmental aspects of thermoelectric cooling. Journal of Thermoelectricity, 2010, no. 4, pp. 5–10.
8.     Bulat L., Nefedova I., Ahiska R. Thermoelectricity based on novel materials: effective and environmentally safety method of direct energy conversion. Proc. 10th International Conference on Sustainable Energy Technologies. Istanbul, 2011, pp. 1–5.
9.     Dresselhaus M.S., Chen G., Tang M.Y., Yang R., Lee H., Wang D., Ren Z., Fleurial J.-P., Gogna P. New directions for low-dimensional thermoelectric materials. Advanced Materials, 2007, vol. 19, no. 8, pp. 1043–1053. doi: 10.1002/adma.200600527
10.  Minnich A.J., Dresselhaus M.S., Ren Z.F., Chen G. Bulk nanostructured thermoelectric materials: current research and future prospects. Energy and Environmental Science, 2009, vol. 2, no. 5, pp. 466–479. doi: 10.1039/b822664b
11.  Lan Y., Minnich A.J., Chen G., Ren Z. Enhancement of thermoelectric figure-of-merit by a bulk nanostructuring approach. Advanced Functional Materials, 2010, vol. 20, no. 3, pp. 357–376. doi: 10.1002/adfm.200901512
12.  Dmitriev A.V., Zvyagin I.P. Current trends in the physics of thermoelectric materials. Physics-Uspekhi, 2010, vol. 53, no. 8, pp. 789–803. doi: 10.3367/UFNe.0180.201008b.0821
13.  Bulat L., Pshenai-Severin D., Karatayev V., Osvenskii V., Parkhomenko Y., Lavrentev M., Sorokin A., Blank V., Pivovarov G., Bublik V., Tabachkova N. Bulk nanocrystalline thermoelectrics based on Bi-Sb-Te solid solution. In: Hashim A.A. (ed.)The Delivery of Nanoparticles. InTech, 2012, pp. 454–486. doi: 10.5772/34829
14.  BulatL.P., OsvenskyV.B., PivovarovG.I., SnarskiiA.A., TatyaninE.V., TayA.A.O.  On the effective kinetic coefficients of thermoelectric nanocomposites. Proc. 6th European Conference on Thermoelectrics.Paris, 2008, pp. I2-1–I2-6.
15.  Bulat L.P., Drabkin I.A., Pivovarov G.I., Osvensky V.B. On thermoelectric properties of materials with nanocrystalline structure. Journal of Thermoelectricity, 2008, no. 4, pp. 26–31.
16.  Bulat L.P., Bublik V.T., Drabkin I.A., Karatayev V.V., Osvensky V.B, Pivovarov G.I., Pshenai-Severin D.A., Tatyanin Е.V., Tabachkova N.Yu. Bulk nanostructured thermoelectrics based on bismuth telluride. Journal of Thermoelectricity, 2009, no. 3, pp. 67–72.
17.  Bulat L.P., Bublik V.T., Drabkin I.A., Karataev V.V., Osvenskii V.B., Parkhomenko Yu.N., Pivovarov G.I., Pshenai-Severin D.A., Tabachkova N.Yu. Bulk nanostructured polycrystalline p-Bi-Sb-Te thermoelectrics obtained by mechanical activation method with hot pressing. Journal of Electronic Materials, 2010, vol. 39, no. 9, pp. 1650–1653. doi: 10.1007/s11664-010-1250-0
18.  Bulat L.P., Drabkin I.A., Karatayev V.V., Osvenskii V.B, Parkhomenko Yu.N., Lavrentev M.G., Sorokin A.I., Pshenai-Severin D.A., Blank V.D., Pivovarov G.I., Bublik V.T., Tabachkova N.Yu. Structure and transport properties of bulk nanothermoelectrics based on BixSb2− xTe3 fabricated by SPS method.Journal of Electronic Materials, 2013, vol. 42, no. 7, pp. 2110–2113. doi: 10.1007/s11664-013-2536-9
19.  Drabkin I.A., Osvenskii V.B., Sorokin A.I., Bulat L.P., Pivovarov G.I. Anizotropiya termoelektricheskikh svoistv ob"emnogo nanostrukturirovannogo materiala na osnove (Bi,Sb)2Te3, poluchennyi metodom iskrovogo plazmennogo spekaniya (SPS) ) [Anisotropy of the thermoelectric properties of the bulk nanostructured material based on (Bi,Sb)2Te3, obtained by spark plasma sintering (SPS)]. Proc. Intergovernmental Seminar of Thermoelectrics and Their Applications. St. Petersburg, 2013, pp. 29–34.
20.  Bublik V.T., Drabkin I.A., Karataev V.V., Lavrent'ev M.G., Osvenskii V.B., Bulat L.P., Pivovarov G.I., Sorokin A.I., Tabachkova N.Yu. Ob"emnyi nanostrukturirovannyi termoelektricheskii material na osnove (Bi,Sb)2Te3, poluchennyi metodom iskrovogo plazmennogo spekaniya (SPS) [Volumetric nanostructured thermoelectric material based on (Bi,Sb)2Te3, obtained by spark plasma sintering (SPS)]. Proc. Intergovernmental Seminar of Thermoelectrics and Their Applications. St. Petersburg, 2013, pp. 23–28.
21.  Bulat L.P., Pshenay-Severin D.A., Drabkin I.A., Karataev V.V., Osvenskii V.B., Parkhomenko Yu.N.,  Blank V.D., Pivovarov G.I., Bublik V.T., Tabachkova N.Yu. Mechanisms of improvement of thermoelectric efficiency in bulk nanostructured polycrystals. Journal of Thermoelectricity, 2011, no. 1, pp. 13–18.
22.  Abryutin V.N., Drabkin I.A., Maronchuk I.I., Osvenskii V.B. Izmerenie termoelektricheskikh obraztsov metodom Kharmana [Measurement of thermoelectric samples by Harman method]. Proc. Intergovernmental Seminar of Thermoelectrics and Their Applications. St. Petersburg, 2004, pp. 303–306.
23.  Ahiska R., Dislitas S. Computer controlled test system for measuring the parameters of the real thermoelectric module.Energy Conversion and Management, 2011, vol. 52, no. 1, pp. 27–36. doi: 10.1016/j.enconman.2010.06.023
24.  Bulat L.P., Akhyska R. Novyi metod i pribor TEPAS dlya izmereniya parametrov real'noi termobatarei [New method and device for measuring parameters TEPAS real thermopile]. Proc. XII Intergovernmental Seminar of Thermoelectrics and Their Applications. St. Petersburg, 2010, pp. 373–378.
25.  Drabkin  I.A., Osvenskii V.B., Parkhomenko Yu.N., Sorokin A.I., Pivovarov G.I., Bulat L.P. Anisotropy of thermoelectric properties of р-type nanostructured material based on (Bi, Sb)2Te3. Journal of Thermoelectricity, 2013, no. 3, pp. 35–46.
26.  Bulat L.P., Pshenaǐ-Severin D.A. Effect of tunneling on the thermoelectric efficiency of bulk nanostructured materials. Physics of the Solid State, 2010, vol. 52, no. 3, pp. 485–492.
27.  Bulat L.P., Kossakovski D., Pshenai-Severin D.A. The influence of phonon thermal conductivity on thermoelectric figure of merit of bulk nanostructured materials with tunneling contacts. Journal of Thermoelectricity, 2013, no. 2, pp. 30–41.
28.  Bulat L.P., Drabkin I.A., Karataev V.V., Osvenskiǐ V.B., Pshenaǐ-Severin D.A. Effect of boundary scattering on the thermal conductivity of a nanostructured semiconductor material based on the BixSb2-xTe3 solid solution. Physics of the Solid State, 2010, vol. 52, no. 9, pp. 1836–1841. doi: 10.1134/S1063783410090088
29.  Bulat L.P., Osvenskii V.B., Parkhomenko Y.N., Pshenay-Severin D.A. Influence of nanoinclusions on scattering of holes and phonons and transport coefficients in BixSb1-xTe3 bulk nanostructures. Journal of Solid State Chemistry, 2012, vol. 193, pp. 122–126. doi: 10.1016/j.jssc.2012.04.049
30.  Bulat L.P., Osvenskii V.B., Parkhomenko Y.N., Pshenay-Severin D.A. Investigation of the possibilities for increasing the thermoelectric figure of merit of nanostructured materials based on Bi2Te3-Sb2Te3 solid solution. Physics of the Solid State, 2012, vol. 54, no. 11, pp. 2168–2172. doi: 10.1134/S1063783412110054
31.  Bulat L.P., Osvenskii V.B., Pshenay-Severin D.A. Influence of grain size distribution on the lattice thermal conductivity of Bi2Te3-Sb2Te3-based nanostructured materials. Physics of the Solid State, 2013, vol. 55, no. 12, pp. 2442–2449. doi: 10.1134/S1063783413120081
32.  Handbook of Thermoelectrics. Ed. D.M. Rowe. CRC Press, 1995, 720 p.
33.  Bulat L.P., Drabkin I.A., Karataev V.V., Osvenskii V.B., Parkhomenko Y.N., Pshenai-Severin D.A., Pivovarov G.I., Tabachkova N.Y. Energy filtration of charge carriers in a nanostructured material based on bismuth telluride. Physics of the Solid State, 2011, vol. 53, no. 1, pp. 29–34. doi: 10.1134/S1063783411010082
34.  Anatychuk L.I., Bulat L.P. Poluprovodniki v Ekstremal'nykh Temperaturnykh Usloviyakh [Semiconductors in Extreme Temperature Conditions]. St. Petersburg, Nauka Publ., 2001, 224 p.
35.  Bulat l.P., Nefedova I.A. O nelineinykh termoelektricheskikh yavleniyakh [About nonlinear thermoelectric phenomena]. Vestnik Mezhdunarodnoi akademii kholoda, 2012, no. 4, pp. 54–56.
36.  Bulat L.P., Nefedova I.A. Nonlocal transport phenomena in semiconductors. Journal of Thermoelectricity, 2013, no. 2, pp. 5–11.
Copyright 2001-2017 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика