D. S. Ivanov, V. P. Veiko, Y. B. Yakovlev, M. E. Carcia, B. Rethfeld

Read the full article 
Article in Russian

For citation: The work is done under the grant support of the President of the Russian Federation NSH-1364.2014.2, RFBR grants 12-02-01194, 13-02-00033, 13-02-00971, and is partially financially supported by the Government of the Russian Federation (grant 074-U01), grants DFG IV 122/1-1 and IV 122/1-2.


 The process of laser ablation under the influence of ultra short laser pulses on metals is investigated by methods of molecular dynamics. The validity and applicability of the hybrid atomistic-continuous model for the estimation of optimum modes of ultra short laser pulses processing are explored. Combination of atomistic model of laser-induced non-equilibrium process of a phase transition at the atomic level with continuous two-temperature model for describing the dynamics of photo-excitation of free media is proposed. Applicability of laser ablation model on the example of aluminum films and gold under exposure to pulses with different energy density and duration is shown. It is indicated that, depending on the ratio of the laser pulse duration and the characteristic time of electron-phonon material interaction, photothermal and photomechanical modes of destruction are implemented that determine the quality and performance of the laser processing. It is established that at the duration of laser pulse less than the time of electron-phonon interaction high-performance photomechanical type of destruction is implemented by internal stresses arising in the area of exposure. This is confirmed by a linear dependence of the ablation rate from the absorbed energy. At the duration of laser pulse greater than the time of electron-phonon interaction inefficient photothermal mode of destruction is implemented. The results may be useful for specialists engaged in the development of laser technologies

Keywords: laser ablation, ultra short laser pulses, molecular dynamics, photothermal destruction, photomechanical destruction

Acknowledgements. Работа выполнена при поддержке гранта Президента Российской Федерации НШ-1364.2014.2, грантов РФФИ 12-02-01194, 13-02-00033, 13-02-00971 и при государственной финансовой поддержке ведущих университетов Российской Федерации (субсидия 074-U01) и грантов DFG IV 122/1-1 и IV 122/1-2


1. Mezzapesa F.P., Sibillano T., Columbo L.L., Di Niso F., Ancona A., Dabbicco M., De Lucia F., Lugarà P.M., Scamarcio G. Direct investigation of the ablation rate evolution during laser drilling of high aspect ratio micro-holes // Proceedings of SPIE - The International Society for Optical Engineering. 2012. V. 8243. Art. 82430S.

2. Lo Turco S., Nava G., Osellame R., Vishnubhatla K.C., Ramponi R. Femtosecond laser micromachining for optofluidic and energy applications // Optical Materials. 2013. V. 36. N 1. P. 102–105.

3. Rizvi N.H. Femtosecond laser micromachining: current status and applications // Riken Review. 2003. V. 50. P. 107–112.

4. Wellershoff S.-S., Hohlfeld J., Gudde J., Matthias E. The role of electron-phonon coupling in femtosecond laser damage of metals // Applied Physics A: Materials Science and Processing. 1999. V. 69. N 7. P. S99– S107.

5. Ivanov D.S., Zhigilei L.V. Combined atomistic-continuum modelling of short-pulse laser melting and disintegration of metal films // Physical Review B – Condensed Matter and Materials Physics. 2003. V. 68. N 6. Art. 064114. P. 064114-1–064114-22.

6. Nolte S., Momma C., Jacobs H., Tunnemann A., Chichkov B.N., Wellegehausen B., Welling H. Ablation of metals by ultrashort laser pulses // Journal of Optical Society of America B: Optical Physics. 1997. V. 14. N 10. P. 2716–2722.

7. Mannion P.T., Favre S., Ivanov D.S., O’Connor G.M., Glynn T.J. Experimental investigation of micromachining on metals with pulse durations in the range of the electron-phonon relaxation time (pico to subpicosecond) // Proc. 3rd International WLT-Conference on Lasers Manufacturing. Munich, 2005. P. 521– 526.

8. Momma C., Nolte S., Chichkov B.N., Alvensleben F.V., Tunnerbaum A. Precise laser ablation with ultrashort pulses // Applied Surface Science. 1997. V. 109–110. P. 15–19.

9. Toenshoff H.K., Ostendorf A., Nolte S., Korte F., Bauer T. Micromachining using femtosecond lasers // Proceedings of SPIE – Laser Precision Manufacturing 2000 Conference. Omiya, Japan, 2000. P. 136–139.

10. Leveugle E., Ivanov D.S., Zhigilei L.V. Photomechanical spallation of molecular and metal targets: molecular dynamics study // Applied Physics A: Materials Science and Processing. 2004. V. 79. N 7. P. 1643–1655.

11. Zhigilei L.V., Lin Z., Ivanov D.S. Atomistic modeling of short pulse laser ablation of metals: connections between melting, spallation, and phase explosion // Journal of Physical Chemistry C. 2009. V. 113. N 27. P. 11892–11906.

12. Ivanov D.S., Rethfeld B.C. The effect of pulse duration on the interplay of electron heat conduction and electron-photon interaction: photo-mechanical versus photo-thermal damage of metal targets // Applied Surface Science. 2009. V. 255. N 24. P. 9724–9728.

13. Ivanov D.S., Lipp V.P., Rethfeld B., Garcia M.E. Molecular-dynamics study of the mechanism of shortpulse laser ablation of singlecrystal and polycrystalline metallic targets // Journal of Optical Technology. 2014. V. 81. N 5. P. 250–253.

14. Zhigilei L.V., Ivanov D.S. Channels of energy redistribution in short-pulse laser interactions with metal targets // Applied Surface Science. 2005. V. 248. N 1–4. P. 433–439.

15. Anisimov S.I., Rethfeld B. On the theory of ultrashort laser pulse interaction with a metal // Proc. SPIE. 1997. V. 3093. P. 192–203.

16. Lin Z., Zhigilei L.V., Celli V. Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium // Physical Review B - Condensed Matter and Materials Physics. 2008. V. 77. N 7. Art. 075133. 

17. Povarnitsyn M.E., Andreev N.E., Apfelbaum E.M., Itina T.E., Khishchenko K.V., Kostenko O.F., Levashov P.R., Veysman M.E. A wide-range model for simulation of pump-probe experiments with metals // Applied Surface Science. 2012. V. 258. N 23. P. 9480–9483.

18. Ivanov D.S., Kuznetsov A.I., Lipp V.P., Rethfeld B., Chichkov B.N., Garcia M.E., Schulz W. Short laser pulse nanostructuring of metals: direct comparison of molecular dynamics modeling and experiment // Applied Physics A: Materials Science and Processing. 2013. V. 111. P. 675–687.

19. Zhakhovskii V.V., Inogamov N.A., Petrov Yu.V., Ashitkov S.I., Nishihara K. Molecular dynamics simulation of femtosecond ablation and spallation with different interatomic potentials // Applied Surface Science. 2009. V. 255. N 24. P. 9592–9596.

20. Wu C., Zhigilei L.V. Microscopic mechanism of laser spallation and ablation of metal targets from largescale molecular dynamics simulations // Applied Physics A: Materials Science and Processing. 2014. V. 114. N 1. P. 11–32.

21. Schäfer C., Urbassek H.M., Zhigilei L.V., Garrison B.J. Pressure-transmitting boundary conditions for molecular dynamics simulations // Computational Materials Science. 2002. V. 24. N 4. P. 421–429.

22. Zhigilei L.V., Ivanov D.S., Leveugle E., Sadigh B., Bringa E.M. Computer modeling of laser melting and spallation of metal targets // Proceedings of SPIE – The International Society for Optical Engineering. 2004. V. 5448. P. 505–519.

23. Anisimov S.I., Kapeliovich B.L., Perel'man T.L. Electron emission from metal surfaces exposed to ultrashort laser pulses // JETP. 1974. V. 39. N 2. P. 375–377.

Copyright 2001-2017 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.