INFLUENCE OF QUARTZ CERAMICS SINGLE-STAGE PROCESSING BY GEL-FORMING WATER SOLUTIONS ON ITS STRENGTH

S. K. Evstropiev, V. M. Volynkin, A. V. Shashkin, K. V. Dukelskiy, A. G. Korobeynikov, Y. A. Gatchin, V. I. Polyakov


Read the full article 
Article in Russian


Abstract

 The main research results of the influence of quartz ceramics processing by silicon- and aluminum-containing gel- forming water solutions on its durability and porosity are given. Aqueous-alcoholic solutions based on tetraethoxysilane (TEOS, Si(C2H5O)4) with additives of aluminum nitrate are proposed for impregnation of porous quartz ceramics samples. Ceramic samples are being impregnated with solutions at the room temperature for 12 minutes. After impregnation they are being exposed to drying at the room temperature for 24 hours and heat treatment in the electric muffle furnace. The made experiments show that impregnation of quartz ceramics porous samples by gel-forming solutions leads to durability growth of not burned samples by 6-7 times even without additional heat treatment. High-temperature heat treatment of previously impregnated ceramic samples leads to decomposition of aluminum nitrate and removal of fossils, and also to hardening of the formed additional bonds between material particles. It considerably improves strength characteristics of quartz ceramics as well. Thus, the possibility of considerable hardening of porous quartz ceramics and stability growth of its strength properties by preliminary impregnation of silicon- and aluminum-bearing gel-forming solutions even without additional heat treatment is experimentally shown. It is revealed that impregnation of porous quartz ceramic samples by these solutions leads only to insignificant reduction of porosity of samples. Subsequent heat treatment of the impregnated porous ceramic samples at the temperatures, equal to 900-1200oC, results in additional significant increase in their mechanical durability.


Keywords:  quartz ceramics, impregnating solution, durability, temperature

References
1.     Dralyuk B.N. Sinaiskii G.V. Sistemy Avtomaticheskogo Regulirovaniya Ob"ektov s Transportnym Zapazdyvaniem [Automatic Control System of Objects With Transport Delay]. Moscow, Energiya Publ., 1969, 72 p.
2.     Krasovskii N.N. Teoriya Upravleniya Dvizheniem [Theory of Motion Control]. Moscow: Nauka Publ., 1968, 476 p.
3.     Zubov V.I. Lektsii po Teorii Upravleniya [Lectures on Control Theory]. 2nd ed. St. Petersburg, Lan' Publ., 2009, 496 p.
4.     Andreev Yu.N. Upravlenie Konechnomernymi Lineinymi Ob”ektami [Control of Finite Linear Objects]. Moscow, Nauka Publ., 1976, 424 p.
5.     Arnol'd V.I. Obyknovennye Differentsial'nye Uravneniya [Ordinary Differential Equations]. 4th ed. Moscow, MTsNMOPubl., 2012, 380 p.
6.     Bellman R. Introduction to Matrix Analysis. NY: MсGraw-Hill, 1960, 328 p.
7.     Gantmakher F.R. Teoriya Matrits [Matrix Theory]. Moscow, Nauka Publ., 1973, 575 p.
8.     Pontryagin L.S. Obyknovennye Differentsial'nye Uravneniya [Ordinary Differential Equations]. Izhevsk, Regulyarnaya i Khaoticheskaya Dinamika Publ., 2001, 400 p.
9.     Anderson B.D.O., Moore J.B. Linear Optimal Control. Prentice-Hall, 1971, 413 p.
10.Zadeh L.A., Desoer C.A. Linear System Theory: The State Space Approach. NY: McGraw-Hill, 1963, 628 p.
11.Dudarenko N., Slita O., Ushakov A. Sovremennaya Teoriya Mnogomernogo Upravleniya: Apparat Prostranstva Sostoyanii [The Modern Theory of Multivariable Control: The Unit of the State Space]. Saarbrucken: LAP LAMBERT Academic Publishing, 2011, 418 p.
12.Dirak P.A.M. The Principles of Quantum Mechanics. 4th ed. Oxford University Press, 1958, 324 p.
13.Matematicheskaya Entsiklopediya[Encyclopedia of Mathematics]. Moscow, Sovetskaya Entsiklopediya Publ., 1979, vol. 2, 1103 p.
14.Popov E.P. Dinamika Sistem Avtomaticheskogo Regulirovaniya [Dynamics of Automatic Control Systems]. Moscow, GostekhizdatPubl., 1954, 800 p.
15.Rotach V.Ya. Raschet Dinamicheskikh Promyshlennykh Avtomaticheskikh Sistem Regulirovaniya [Calculation of Dynamic Industrial Automatic Control Systems]. Мoscow, Energiya Publ., 1973, 440 p.
16.Shavrov A.A. Kompensator Transportnogo Zapazdyvaniya v Sistemakh Avtomaticheskogo Upravleniya [Compensator of Transport Delay in Automatic Control Systems]. Vestnik RGAZU: Agroinzheneriya, 2004, p. 52.
17.Tang G.-Y., Fu P.-L. Suboptimal control approach of linear time-delay systems. Proc. 14thWorldCongressofIFAC. China, 1999, pp. 99–103.
18.Cao Y.-Y., Lam J., Sun Y.-X. Robust control for uncertain systems with time-delay and jump parameters. Proc. 14th World Congress of IFAC. China, 1999, pp. 191–196.
19.Jankovic M. Control of nonlinear systems with time delay. Proc. 42nd IEEE Conference on Decision and Control. Maui, USA, 2003, vol. 5, pp. 4545–4550. doi: 10.1109/CDC.2003.1272267
20.Kharitonov V.L., Niculescu S.-I., Moreno J., Michiels W. Static output feedback stabilization: necessary conditions for multiple delay controllers. IEEE Transaction on Automatic Control, 2005, vol. 50, no. 1, pp. 82–86. doi: 10.1109/TAC.2004.841137
21.Besekerskii V.A., Popov E.P. Teoriya Sistem Avtomaticheskogo Regulirovaniya [The Theory of Automatic Control Systems]. St. Petersburg, Professiya Publ., 2003, 752 p.
22.Akunov T.A., Dudarenko N.A., Polinova N.A., UshakovA.V. Issledovanie kolebatel’nosti protsessov v aperiodicheskikh nepreryvnykh sistemakh, porozhdaemoi faktorom kratnosti sobstvennykh chisel [Process oscillativity study in aperiodic continuous systems, generated by eigenvalues multiplication factor]. Scientific and Technical Journal of Information Technologies, Mechanics and Optics,2013, no. 3 (85), pp. 55–61.
23. Dudarenko N., Ushakov A. Analiz Mnogomernykh Dinamicheskikh Sistem: Tekhnologiya Kontrolya Vyrozhdeniya [Analysis of Multi-Dimensional Dynamic Systems: Technology of Degeneration Control]. Saarbrucken: LAP LAMBERT Academic Publishing, 2012, 232 p.
Copyright 2001-2017 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика