CRYSTALLIZATION KINETICS OF POLYMERIC NANOCOMPOSITES BASED ON POLYAMIDE 12 MODIFIED BY Cr2O3 NANOPARTICLES

E. S. Shapoval, V. V. Zuev


Read the full article 
Article in Russian


Abstract

  In situ polymerization method is used for obtaining polymeric composites based on polyamide12 matrix (PA 12), filled with Cr2O3 nanoparticles. The carried out researches result in synthesis method development for polymeric nanocomposites based on PA 12 matrix filled with nano-sized Cr2O3magnetic particles providing uniform embedding of the filler into polymeric matrix without formation of nanoparticles agglomerates. Mechanical tests on samples compression are carried out. It is shown that mechanical properties of polymeric composites (Young’s modulus, durability limit) are decreased for 20-30 % as compared with not modified PA 12 synthesized by means of the chosen method. The influence of the filler on crystallization morphology and kinetics of polymeric nanocomposites is determined by electron microscopy and differential scanning calorimetry. The values of crystallization degree, crystallization rate constant for different supercooling intervals and parameters of Avrami equation are obtained. The initial nucleation is shown to be going on according to non-thermal mechanism, and nanoparticles are not the germs of crystallization. It is stated that nanoparticles are embedded into polymeric matrix and uniformly allocated in crystallites. Research results can find their application at creation of electric and magnetic fields, micro-sized mechanical devices, and at development of new materials for 3D printers.


Keywords: nanoparticles of chromium (III) oxide Cr2O3, polymeric nanocomposites, mechanical properties of nanocomposites, crystallization kinetics, Avrami equation

References
1.     TreacyM.M.J., Ebbesen T.W., Gibson J.M. Exceptionally high Young's modulus observed for individual carbon nanotubes.Nature, 1996, vol. 381, no. 6584, pp. 678–680.
2.     Spitalsky Z., Tasis D., Papagelis K., Galiotis C. Carbon nanotube–polymer composites: Chemistry, processing, mechanical and electrical properties. Progress in Polymer Science, 2010, vol. 35,no. 3, pp. 357–401. doi: 10.1016/j.progpolymsci.2009.09.003
3.     Yoo H., Moon S.-K., Hwang T., Kim Y.S., Kim J.-H., Choi S.-W., Kim J.H. Multifunctional magnetic nanoparticles modified with polyethylenimine and folic acid for biomedical theranostics. Langmuir,2013, vol.29,no. 20, pp. 5962–5967. doi: 10.1021/la3051302
4.     Zuev V.V.The mechanisms and mechanics of the toughening of epoxy polymers modified with fullerene C60. Polymer Engineering and Science,2012, vol. 52, no. 12, pp. 2518–2522. doi: 10.1002/pen.23211
5.     Makhlouf S.A., Bakr Z.H, Аl-Attar H., Moustafa M.S. Structural, morphological and electrical properties of Cr2O3 nanoparticles. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2013, vol. 178, no. 6, pp. 337–343. doi: 10.1016/j.mseb.2013.01.012
6.     Athreya S.R., Kalaitzidou K., Das S. Mechanical and microstructural properties of Nylon-12/carbon black composites: selective laser sintering versus melt compounding and injection molding. Composites Science and Technology, 2011, vol. 71, no. 4, pp. 506–510. doi: 10.1016/j.compscitech.2010.12.028
7.     Razzaq M.Y., Anhalt M., Frormann L., Weidenfeller B. Thermal, electrical and magnetic studies of magnetite filled polyurethane shape memory polymers. Materials Science and Engineering A, 2007, vol. 444, no. 1, pp. 227–235. doi: 10.1016/j.msea.2006.08.083
8.     Buxbaum G., Pfaff G. Industrial Inorganic Pigments. 3rd ed. Wiley-VCH, 2005, 315 p. doi: 10.1002/3527603735
9.     Park D.-H., Hwang S.-J., Oh J.-M., Yang J.-H., Choy J.-H. Polymer-inorganic supramolecular nanohybrids for red, white, green, and blue applications. Progress in Polymer Science, 2013, vol. 38, no. 10–11, pp. 1442–1486. doi: 10.1016/j.progpolymsci.2013.05.007
10.Gorbunova E.V., Deev E.S., Kulichikhin S.G., Ryabov E.A. Kineticheskie osobennosti polimerizatsii kapro- i dodekalaktama v prisutstvii okislov titana, khroma, tsinka i tsirkoniya [Kinetic features of the polymerization and kapro- dodekalaktama in the presence of oxides of titanium, chromium, zinc, and zirconium]. Plasticheskie massy, 1981, no. 10, pp. 12–19.
11.Zuev V.V., Ivanova Y.G. Polymer nanocomposites based on polyamide 6 modified with fulleroid fillers. Polymer Science. Series A, 2011, vol. 53, no. 5, pp. 424–429. doi: 10.1134/S0965545X11050129
12.Shapoval E.S., Zuev V.V. Polimernye nanokompozity na osnove poliamida 12, modifitsirovannogo nanochastitsami [Polymer nanocomposites based on polyamide 12 filled with nickel nanoparticles]. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2013, no. 4(86), pp. 92–95.
13.Zhang J., Xu S., Kumacheva E. Polymer microgels: reactors for semiconductor, metal, and magnetic nanoparticles. Journal of American Chemical Society, 2004, vol. 126, no. 25, pp. 7908–7914. doi: 10.1021/ja031523k
14.Pomogailo A.D., Rozenberg A.S., Uflyand I.E. Nanochastitsy Metallov v Polimerakh [Metal Nanoparticles in Polymers]. Moscow, Khimiya Publ., 2000, 672 p.
15.Naffakh M., Marco C., Gomez M.A., Jimenez I. Novel melt-processable nylon 6/ inorganic fullerene-like WS2 nanocomposites: complex isothermal crystallization kinetics and melting behaviour. Materials Chemistry and Physics, 2011, vol. 128, no. 1–2, pp. 265–273. doi: 10.1016/j.matchemphys.2011.03.019
16.Plummer C.J.G., Zanetto J.-E., Bourban P.-E., Manson J.-A.E. The crystallization kinetics of polyamide-12. Colloid and Polymer Science, 2001, vol. 279, no. 4, pp. 312–322. doi: 10.1007/s003960000425
17.Avrami M. Kinetics of phase change. I General theory. The Journal of Chemical Physics, 2004, vol. 7, no. 12, pp. 1103–1112.
18.Wunderlich B. MacromolecularPhysics – Crystal Nucleation Growth Annealing. NY: Academic Press, 1976, 471 p.
Copyright 2001-2017 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика