EXPERIMENTAL STUDY OF FIRMWARE FOR INPUT AND EXTRACTION OF USER’S VOICE SIGNAL IN VOICE AUTHENTICATION SYSTEMS

O. N. Faizulaieva, I. S. Nevlyudov


Read the full article 
Article in Russian


Abstract

 T Scientific task for improving the signal-to-noise ratio for user’s voice signal in computer systems and networks during the process of user’s voice authentication is considered. The object of study is the process of input and extraction of the voice signal of authentication system user in computer systems and networks. Methods and means for input and extraction of the voice signal on the background of external interference signals are investigated. Ways for quality improving of the user’s voice signal in systems of voice authentication are investigated experimentally. Firmware means for experimental unit of input and extraction of the user’s voice signal against external interference influence are considered. As modern computer means, including mobile, have two-channel audio card, two microphones are used in the voice signal input. The distance between sonic-wave sensors is 20 mm and it provides forming one direction pattern lobe of microphone array in a desired area of voice signal registration (from 100 Hz to 8 kHz). According to the results of experimental studies, the usage of directional properties of the proposed microphone array and space-time processing of the recorded signals with implementation of constant and adaptive weighting factors has made it possible to reduce considerably the influence of interference signals. The results of firmware experimental studies for input and extraction of the user’s voice signal against external interference influence are shown. The proposed solutions will give the possibility to improve the value of the signal/noise ratio of the useful signals recorded up to 20 dB under the influence of external interference signals in the frequency range from 4 to 8 kHz. The results may be useful to specialists working in the field of voice recognition and speaker discrimination.


Keywords:  authentication, array, direction pattern, voice signal, quadrature processing, microphone

Acknowledgements. Работа выполнена при поддержке Министерства образования и науки Российской Федерации и Совета по грантам Президента Российской Федерации (грант МД-1072.2013.9) и частично при государственной финансовой поддержке ведущих университетов Российской Федерации (субсидия 074-U01).

References
1.     Sorokin V.N., V'yugin V.V., Tananykin A.A. Raspoznavanie lichnosti po golosu: analiticheskii obzor [Individual voice recognition: an analytical review]. Informatsionnye Protsessy, 2012, vol. 12, no. 1, pp. 1–30.
2.     Faizulaieva O.N., Nevlyudov I.S. Puti uluchsheniya kachestva rechevogo signala pol'zovatelya sistem golosovoi autentifikatsii [Methods for quality enhancement of user voice signal in voice authentication systems]. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2014, no. 2 (90), pp. 118–123.
3.     Sorokin V.N., Tsyplikhin A.I. Speaker verification using the spectral and time parameters of voice signal. Journal of Communications Technology and Electronics, 2010, vol. 55, no. 12, pp. 1561–1574. doi: 10.1134/S1064226910120302
4.     Davis S.B., Mermelstein P. Comparison of parametric representations for monosyllabic word recognition in continuously spoken sentences. IEEE Transactions on Acoustics, Speech, Signal Process, 1980, vol. ASSP-28, no. 4, pp. 357–366.
5.     Patterson R.D., Holdsworth J. A functional model of neural activity patterns and auditory images. In Advances in Speech, Hearing and Language Processing, 1996, vol. 3, pp. 547–563.
6.     Besacier L., Bonastre J.-F. Subband architecture for automatic speaker  recognition. Signal Processing, 2000, vol. 80, no. 7, pp. 1245–1259. doi: 10.1016/S0165-1684(00)00033-5
7.     Lu X., Dang J. An investigation of dependencies between frequency components and speaker characteristics for text-independent speaker identification. Speech Communication, 2007, vol. 50, no. 4, pp. 312–322. doi: 10.1016/j.specom.2007.10.005
8.     Petelin R.Yu., Petelin Yu.V. Cool Edit Pro 2. Sekrety Masterstva [Cool Edit Pro 2.Secrets of Mastery]. Sankt-Petersburg, BHV-Peterburg Publ., Arlit, 2002, 432 p.
9.     D'yakonov V.P. MATLAB 6/6.1/6.5 + Simulink 4/5 Osnovy Primeneniya [MATLAB 6/6.1/6.5 + Simulink 4/5 Bases of Application]. Moscow, SOLON-Press Publ., 2004, 768 p.
10.Belousova E.E., Pastushenko N.S., Pastushenko O.N. Analiz vliyaniya chastoty diskretizatsii na kachestvo formirovaniya kvadraturnoi sostavlyayushchei analiticheskogo signala [Analysis of the sampling rate influence on quality of quadrature component forming of the analytical signal]. Vostochno-Evropeiskii Zhurnal Peredovykh Tekhnologii, 2013, vol. 1, no. 9 (61), pp. 8–13.
11.Belousova E.E., Pastushenko O.N. Analiz vliyaniya chastoty diskretizatsii na kachestvo formirovaniya kvadraturnoi sostavlyayushchei dlya nekotorykh signalov [Analysis of the sampling rate influence on quality of quadrature component forming of the some signals]. Radiotekhnika, 2013, no. 172, pp. 141–146.
12.Faizulaeva O.N. Avtomatizatsiya protsedur prinyatiya resheniya ob isklyuchenii iz obrabotki pervoi modovoi funktsii pri ispol'zovanii preobrazovaniya Gil'berta-Khuanga [Automation of the decision to expel the mode of processing the first function using Hilbert-Huang transform]. Radio Engineering, 2013, no. 175, pp. 147–153
Copyright 2001-2017 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика