INTERVALS OPTIMIZATION OF SYSTEMS INFORMATION SECURITY INSPECTION

V. A. Bogatyrev, A. V. Bogatyrev, S. V. Bogatyryev


Read the full article 
Article in Russian


Abstract

 A Markov model is suggested for secure information systems, functioning under conditions of destructive impacts, which aftereffects are found by on-line and test control. It is assumed that on-line control, in contrast to the test one, is char- acterized by the limited control completeness, but does not require the stopping of computational process. The aim of re- search is to create models that optimize intervals of test control initialization by the criterion of probability maximization for system stay in the ready state to secure fulfillment of the functional requests and minimization of the dangerous system states in view of the uncertainty and intensity variance of the destructive impacts. Variants of testing intervals optimization are con- sidered depending on the intensity of destructive impacts by the criterion of the maximum system availability for the safe execution of queries. Optimization is carried out with and without adaptation to the actual intensity change of destructive impacts.  The efficiency of adaptive change for testing periods is shown depending on the observed activity of destructive impacts. The solution of optimization problem is obtained by built-in tools of computer mathematics Mathcad 15, including symbolic mathematics for solution of systems of algebraic equations. The proposed models and methods of determining the optimal testing intervals can find their application in the system design of computer systems and networks of critical applications, working under conditions of destabilizing actions with the increased requirements for their safety.


Keywords:   Markov model, control, dangerous states, destructive impacts, optimization

Acknowledgements. The work is done within the framework of S&R “Methods and Models for Integrated Security and Operation Stability of Computer Systems”.

References
1.         Cherkesov G.N. Nadezhnost' Apparatno-Programmnykh Kompleksov [Reliability of Hardware and Software Systems]. St. Petersburg: Piter Publ., 2005, 479 p.
2.         Kopetz H. Real-Time Systems: Design Principles for Distributed Embedded Applications. Springer, 2011, 396 p.doi: 10.1007/978-1-4419-8237-7
3.         Wang S.-C., Yan K.-Q., Ho C.-L., Wang S.-S. The optimal generalized Byzantine agreement in cluster-based wireless sensor networks. Computer Standards and Interfaces, 2014, vol. 34, no. 5, pp. 821–830. doi: 10.1016/j.csi.2014.01.005
4.         Abd-El-Barr M., Gebali F. Reliability analysis and fault tolerance for hypercube multi-computer networks. Information Sciences, 2014, vol. 276, pp. 295–318. doi: 10.1016/j.ins.2013.10.031
5.         Dolev D., Függer M., Posch M., Schmid U., Steininger A., Lenzen C. Rigorously modeling self-stabilizing fault-tolerant circuits: an ultra-robust clocking scheme for systems-on-chip. Journal of Computer and System Sciences, 2014, vol. 80, no. 4, pp. 860–900. doi: 10.1016/j.jcss.2014.01.001
6.         Li H., Liu H., Gao H., Shi P. Reliable fuzzy control for active suspension systems with actuator delay and fault. IEEE Transactions on Fuzzy Systems, 2012, vol. 20, no. 2, pp. 342–357. doi: 10.1109/TFUZZ.2011.2174244
7.         Shooman M.L. Reliability of Computer Systems and Networks: Fault Tolerance, Analysis, and Design. John Wiley & Sons Inc., 2002, 527 p. doi: 10.1002/047122460X
8.         Sorin D.J. Fault Tolerant Computer Architecture. Morgan & Claypool, 2009, 103 p.
9.         Koren I., Krishna C.M. Fault Tolerant Systems. San Francisco: Morgan Kaufmann Publishers, 2009, 378 p.
10.      Gómez A., Carril L.M., Valin R., Mouriño J.C., Cotelo C. Fault-tolerant virtual cluster experiments on federated sites using BonFIRE. Future Generation Computer Systems, 2014, vol. 34, pp. 17–25. doi: 10.1016/j.future.2013.12.027
11.      Bogatyrеv V.A, Bogatyrеv S.V., Golubev I.Yu. Optimization and the process of task distribution between computer system clusters. Automatic Control and Computer Sciences, 2012, vol. 84, no. 3, pp. 103–111. doi: 10.3103/S0146411612030029
12.      Bogatyrev V.A. Fault tolerance of clusters configurations with direct connection of storage devices. Automatic Control and Computer Sciences, 2011, vol. 45, no. 6, pp. 330–337. doi: 10.3103/S0146411611060046
13.      Bogatyrеv V.A. Exchange of duplicated computing complexes in fault tolerant systems. Automatic Control and Computer Sciences, 2011, vol. 46, no. 5, pp. 268–276. doi: 10.3103/S014641161105004X
14.      Aliev T.I. Proektirovanie sistem s prioritetami [Design of systems with priorities]. Izv. vuzov. Priborostroenie, 2014, vol. 57, no. 4, pp. 30–35.
15.      Bogatyrev V.A., Bogatyrev S.V., Bogatyrev A.V. Funktsional'naya nadezhnost' vychislitel'nykh sistem s pereraspredeleniem zaprosov [Functional reliability of computing systems with redistribution of inquiries]. Izv. vuzov. Priborostroenie, 2012, vol. 55, no. 10, pp. 53–56.
16.      Kolbanev M.O., Tatarnikova T.M., Vorobyov A.I. Model' obrabotki klientskikh zaprosov [Client requests processing model]. Telekommunikatsii, 2013, no. 9, pp. 42–47.
17.      Bogatyrev V.A. Otkazoustoichivost' i sokhranenie effektivnosti funktsionirovaniya mnogomagistral'nykh raspredelennykh vychislitel'nykh system [Resiliency and preserve the functioning of mainline distributed computing systems]. Information Technologies, 1999, no. 9, pp. 44–48.
18.      Bogatyrev V.A. K povysheniyu nadezhnosti vychislitel'nykh sistem na osnove dinamicheskogo raspredeleniya funktsii [To improve the reliability of computer systems based on the dynamic allocation of functions]. Izv. vuzov. Priborostroenie, 1981, vol. 23, no. 8, pp. 62–65.
19.      Bogatyrev V.A., Bogatyrev S.V. Kriterii optimal'nosti mnogourovnevykh otkazoustoichivykh komp'yuternykh sistem [Optimality criteria of multilevel failure-safe computer systems]. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2009, no. 5 (63), pp. 92–97.
20.      Pereguda A.I., Timashov D.A. Veroyatnostnyi analiz pokazatelei nadezhnosti podsistem SUZ s uchetom periodicheskogo kontrolya ispravnosti [A reliability model for safety system-protected object complex with periodic testing of safety system]. Izv. vuzov. Yadernaya Energetika, 2009, no. 4, pp. 45–53.
21.       Bogatyrev V.A. Mul'tiprotsessornye sistemy s dinamicheskim pereraspredeleniem zaprosov cherez obshchuyu magistral' [Multiprocessor systems with dynamic reallocation requests through a common backbone]. Izv. vuzov SSSR. Priborostroenie, 1985, no. 3, pp. 33–38.
22.      Bogatyrev V.A. Otsenka veroyatnosti bezotkaznoi raboty funktsional'no-raspredelennykh vychislitel'nykh sistem pri ierarkhicheskoi strukture uzlov [Estimating the probability of failure-free operation functionally distributed computing systems with a hierarchical structure of nodes]. Izv. vuzov. Priborostroenie, 2000, vol. 43, no. 3, pp. 67–70.
23.      Bogatyrev V.A., Bogatyrev S.V. Nadezhnost' sistemy upravleniya agregatami i mashinami kommunal'nogo khozyaistva [Reliability of the control system of units and machines public utilities]. Tekhniko-Tekhnologicheskie Problemy Servisa, 2008, no. 4 (6), pp. 23–27.
24.      Bogatyrev V.A., Bogatyrev S.V., Parantaev G.V. Balansirovki nagruzki v sistemakh upravleniya mashinami i agregatami kommunal'no-bytovoi sfery [Load balancing in systems of machines management and units of municipal domestic sphere]. Tekhniko-Tekhnologicheskie Problemy Servisa, 2008, no. 3 (5), pp. 54–58.
25.      Gatchin Yu.A., Zharinov I.O., Korobeynikov A.G. Matematicheskie modeli otsenki infrastruktury sistemy zashchity informatsii na predpriyatii [Mathematical estimation models of information security system infrastructure at the enterprise]. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2012, no. 2 (78), pp. 92–95.
Copyright 2001-2017 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика