E. V. Ushakova, V. V. Golubkov, E. O. Oskolkov, A. P. Litvin, P. S. Parfenov, A. V. Baranov

Read the full article 
Article in Russian

The method of X-ray structural analysis (X-ray scattering at small angles) is used to show that the structures obtained by self-organization on a substrate of lead sulfide (PbS) quantum dots are ordered arrays. Self-organization of quantum dots occurs at slow evaporation of solvent from a cuvette. The cuvette is a thin layer of mica with teflon ring on it. The positions of peaks in SAXS pattern are used to calculate crystal lattice of obtained ordered structures. Such structures have a primitive orthorhombic crystal lattice. Calculated lattice parameters are: a = 21,1 (nm); b = 36,2 (nm); c = 62,5 (nm). Dimensions of structures are tens of micrometers. The spectral properties of PbS QDs superstructures and kinetic parameters of their luminescence are investigated. Absorption band of superstructures is broadened as compared to the absorption band of the quantum dots in solution; the luminescence band is slightly shifted to the red region of the spectrum, while its bandwidth is not changed much. Luminescence lifetime of obtained structures has been significantly decreased in comparison with the isolated quantum dots in solution, but remained the same for the lead sulfide quantum dots close-packed ensembles. Such superstructures can be used to produce solar cells with improved characteristics.

Keywords: quantum dot, lead sulfide, self-organization, super-crystal, X-ray structural analysis

 1.         Fedorov A.V., Baranov A.V. Optika Kvantovykh Tochek [Optics of Quantum Dots]. In: Optika Nanostruktur [Optics of Nanostructures]. Ed. A.V. Fedorov. St. Petersburg, Nedra Publ., 2005, 326 p.
2.         Collier C.P., Vossmeyer T., Heath J.R. Nanocrystal superlattices. Annual Review of Physical Chemistry, 1998, vol. 49, no. 1, pp. 371–404.
3.         Algar W.R., Tavares A.J., Krull U.J. Beyond labels: a review of the application of quantum dots as integrated components of assays, bioprobes, and biosensors utilizing optical transduction. Analytica Chimica Acta, 2010, vol. 673, no. 1, pp. 1–25. doi: 10.1016/j.aca.2010.05.026
4.         Giansante C., Carbone L., Giannini C., Altamura D., Ameer Z. et al. Colloidal arenethiolate-capped PbS quantum dots: optoelectronic properties, self-assembly, and application in solution-cast photovoltaics. The Journal of Physical Chemistry C, 2013, vol. 117, no. 25, pp. 13305–13317. doi: 10.1021/jp403066q
5.         Ushakova E.V., Litvin A.P., Parfenov P.S., Fedorov A.V., Artemyev M., Prudnikau A.V., Rukhlenko I.D., Baranov A.V. Anomalous size-dependent decay of low-energy luminescence from PbS quantum dots in colloidal solution. ACS Nano, 2012, vol. 6, no. 10, pp. 8913–8921. doi: 10.1021/nn3029106
6.         Scheele M., Hanifi D., Zherebetsky D., Chourou S.T., Axnanda S. et al. PbS nanoparticles capped with tetrathiafulvalenetetracarboxylate: utilizing energy level alignment for efficient carrier transport. ACS Nano, 2014, vol. 8, no. 3, pp. 2532–2540. doi: 10.1021/nn406127s
7.         Quan Z., Xu H., Wang C., Wen X., Wang Y. et al. Solvent-mediated self-assembly of nanocube superlattices. Journal of the American Chemical Society, 2014, vol. 136, no. 4, pp. 1352–1359. doi: 10.1021/ja408250q
8.         Small Angle X-Ray Scattering. Eds. Glatter O., Kratky O. NY-London, Academic Press, 1982, 515 p.
9.         Parfenov P.S., Baranov A.V., Veniaminov A.V., Orlova A.O. A complex for the fluorescence analysis of macro-and microsamples in the near-infrared. Journal of Optical Technology, 2011, vol. 78, no. 2, pp. 120–123.
10.      Parfenov P.S., Litvin A.P., Baranov A.V., Ushakova E.V., Fedorov A.V., Prudnikov A.V., Artemyev M.V. Measurement of the luminescence decay times of PbS quantum dots in the near-IR spectral range. Optics and Spectroscopy, 2012, vol. 112, no. 6, pp. 868–873. doi: 10.1134/S0030400X12060136
11.      Parfenov P.S., Litvin A.P., Baranov A.V., Veniaminov A.V., Ushakova E.V. Calibration of the spectral sensitivity of instruments for the near infrared region. Journal of Applied Spectroscopy, 2011, vol. 78, no. 3, pp. 433–439. doi: 10.1007/s10812-011-9474-1
12.      de Mello Donegá C., Liljeroth P., Vanmaekelbergh D. Physicochemical evaluation of the hot-injection method, a synthesis route for monodisperse nanocrystals. Small, 2005, vol. 1, no. 12, pp. 1152–1162. doi: 10.1002/smll.200500239
13.      Ushakova E.V., Golubkov V.V., Litvin A.P., Parfenov P.S., Baranov A.V. Samoorganizatsiya kvantovykh tochek sul'fida svintsa raznogo razmera [Self-organization of lead sulfide quantum dots of different sizes]. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2013, no. 6 (86), pp. 127–132.
14.      Litvin A.P., Parfenov P.S., Ushakova E.V., Fedorov A.V., Artemyev M.V., Prudnikov A.V., Golubkov V.V., Baranov A.V. PbS quantum dots in a porous matrix: optical characterization. The Journal of Physical Chemistry C, 2013, vol. 117, no. 23, pp. 12318–12324. doi: 10.1021/jp402287b
15.      Baimuratov A.S., Rukhlenko I.D., Fedorov A.V. Engineering band structure in nanoscale quantum-dot supercrystals. Optics Letters, 2013, vol. 38, no. 13, pp. 2259–2261. doi: 10.1364/OL.38.002259

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2018 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.