DOI: 10.17586/2226-1494-2015-15-1-6-13


N. D. Zoric, I. L. Livshits, E. A. Sokolova

Read the full article 
Article in Russian

For citation: Zoric N.Dj., Livshits I.L., Sokolova E.A. Advantages of diffractive optical elements application in simple optical imaging systems. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2015, vol. 15, no. 1, pp. 6–13 (in Russian)


The paper deals with the influence of diffractive optical elements on the optical aberrations. The correction of optical aberrations was investigated in the simple optical systems with one and two lenses (singlet and doublet). The advantages of diffractive optical elements are their ability to generate arbitrary complex wave fronts from a piece of optical material that is essentially flat. The optical systems consisting of the standard surfaces were designed and optimized by using the same starting points. Further, the diffractive and aspheric surfaces were introduced into the developed systems. The resulting hybrid systems were optimized. To compare the complicity of the development of narrow field systems and wide field optical systems, the optimization has been done separately for these two types of the instruments. The optical systems were designed by using special Optical Design Software. Тhe characteristics of designed diffractive surfaces were controlled in Software DIFSYS 2.30. Due to the application of diffractive optical elements the longitudinal chromatic aberration was 5 times reduced for the narrow field systems. The absolute value of Seidel coefficient related to the spherical aberration was reduced in the range of 0.03. Considering that diffractive optical elements have the known disadvantages, like possible parasitic diffraction orders and probable decrease of the transmission, we also developed and analyzed the optical systems with combined aspheric and diffractive surfaces. A combination of the aspheric and diffractive surfaces in the optical disk system of the disk reading lens, gave cutting down of the longitudinal color aberrations almost 15 times on-axis, comparing to the lens consisting of the aspherical and standard surfaces. All of the designed diffractive optical elements possess the parameters within the fabrication limits.

Keywords: diffractive optical elements, binary surface, aberrations, lens, optical systems design

Acknowledgements. The research leading to these results has received funding from the People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme (FP7/2007-2013) under REA grant agreement no. PITNGA-2013-608082 ‘ADOPSYS’.


1. Garcıa-Lievanos O., Vazquez-Montiel S., Hernandez-Cruz J.A. Spherical aberration correction using refractive-diffractive lenses with an analytic-numerical method // Advances in Optical Technologies. 2010. Art. 783206. doi: 10.1155/2010/783206
2. Diffractive Optical Elements [Электронный ресурс]. Режим доступа:, свободный. Яз. англ. (дата обращения 10.12.2014).
3. Born M., Wolf E. Principles of Optics. 7th ed. Cambridge: Cambridge University Press, 2002. 987 p.
4. Davidson N., Friesem A.A., Hasman E. Analytical design of hybrid diffractive-refractive achromats // Applied Optics. 1993. V. 32. N 25. P. 4770–4774.
5. Liping Z., Loy L.Y., Yan Z., Zhisheng Y. Achromatic design strategies with diffractive optical elements // Proceedings of SPIE - The International Society for Optical Engineering. 1999. V. 3897. P. 624–631.
6. Kalikmanov V.I., Sokolova E.A. Ill-posed inverse problem in diffractive optics. Tolerance analysis of diffractive lenses and gratings // Journal of the Optical Society of America A: Optics and Image Science, and Vision. 2006. V. 23. N 2. P. 497–503. doi: 10.1364/JOSAA.23.000497
7. Грейсух Г.И., Безус Е.А., Быков Д.А., Ежов Е.Г., Степанов С.А. Дифракционные элементы в оптиче- ских системах оптоэлектроники // Оптический журнал. 2009. Т. 76. № 7. С. 25–30.
8. Бобров С.Т., Грейсух Г.И., Туркевич Ю.Г. Оптика дифракционных элементов и систем. Л.: Машино- строение, 1986. 223 с.
9. Бармичева Г.В., Ган М.А., Старков А.А. Анализ эффективности применения асферико- дифракционных элементов в оптических системах для ИК области // Сборник трудов 9 Международ- ной конференции "Прикладная оптика-2010". СПб., 2010. С. 227–230.
10. Васильев В.Н., Лившиц И.Л., Сергеев М.Б., Соколова Е.А. Гибридный микрообъектив для оптико- информационных систем комбинационного рассеяния // Информационно-управляющие системы. 2012. № 5 (60). С. 2–6.
11. ZEMAX 9.1 Optical Design Program User's Manual, 2010. P. 259–301.
12. Smith W.J. Modern Optical Engineering. 3rd ed. NY: McGraw-Hill, 2000. 617 p.
13. Soifer V.A. Methods for Computer Design of Diffractive Optical Elements. NY: John Wiley & Sons, 2002. 784 p.
14. Laikin M. Lens Design. 4th ed. NY: Marcel Dekker Inc., 1995. 446 p.
15. Kojima T. Progress of Lenses for Optical Disk System // Konica Technical Report. 2002. V. 15. P. 5–12.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2018 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.