DOI: 10.17586/2226-1494-2015-15-2-227-233


COMPENSATION OF OUTPUT SIGNAL TEMPERATURE DEPENDENCE IN HOMODYNE DEMODULATION TECHNIQUE FOR PHASE FIBER-OPTIC SENSORS

M. V. Mekhrengin, A. Y. Kireenkov, D. A. Pogorelaya, M. Y. Plotnikov, P. A. Shuklin


Read the full article 
Article in Russian

For citation: Mekhrengin M.V., Kireenkov A.Yu., Pogorelaya D.A., Plotnikov M.Yu., Shuklin Ph.A. Compensation of output signal temperature dependence in homodyne demodulation technique for phase fiber-optic sensors. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2015, vol.15, no. 2, pp. 227–233. (in Russian)

Abstract
Modified phase-generated carrier homodyne demodulation technique for fiber-optic sensors is presented. Nowadays phase-generated carrier homodyne demodulation technique is one of the most widespread. One of its drawbacks is the temperature dependence of the output signal because of the modulator scale factor temperature dependence. In order to compensate this dependence an automatic adjustment of the phase modulation depth is necessary. To achieve the result, additional harmonics analysis is used with the help of the Bessel functions. For this purpose the known demodulation scheme is added with the branch, where interferometric signal is multiplied by the third harmonic of the modulation signal. The deviation of optimal ratio of odd harmonics is used as a feedback signal for adjusting the modulation depth. Unwanted emissions arise in the feedback signal, when the third harmonic possesses a value close to zero. To eliminate unwanted emission in the feedback signal, the principle scheme is added with one more branch, where interferometric signal is multiplied by the forth harmonic of the modulation signal. The deviation of optimal ratio of even harmonics is used as a feedback signal alternately with the deviation of optimal ratio of odd harmonics. A mathematical model of the algorithm is designed using the MATLAB package. Results of modeling have confirmed that suggested method gives the possibility for an automatic adjustment of the phase modulation depth and makes it possible to compensate temperature dependence for the modulator scale factor and output signal magnitude.

Keywords: interferometric fiber-optic sensors, homodyne demodulation technique, compensation of temperature dependence.

Acknowledgements. This work was carried out in ITMO University and supported by the Ministry of Education and Science of the Russian Federation (Project #02.G25.31.0044).

References
1. Plotnikov M.J., Kulikov A.V., Strigalev V.E., Meshkovsky I.K. Dynamic range analysis of the phase generated carrier demodulation technique. Advances in Optical Technologies, 2014, art. 815108. doi:
10.1155/2014/815108
2. Dandridge A., Tveten A.B., Gialloronzi T.G. Homodyne demodulation scheme for fiber optic sensors using phase generated carrier. IEEE Journal of Quantum Electronics, 1982, vol. 18, no. 10, pp. 1647–1653.
3. Plotnikov M., Kulikov A., Strigalev V. Issledovanie zavisimosti amplitudy vykhodnogo signala v skheme gomodinnoi demodulyatsii dlya fazovogo volokonno-opticheskogo datchika [Optical technologies investigation of output signal amplitude dependence in homodyne demodulation scheme for phase fiber-optic sensor]. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2013, no. 6 (88), pp. 18–22.
4. Azmi A.I., Leung I., Chen X., Zhou S., Zhu Q., Gao K., Childs P., Peng G. Fiber laser based hydrophone systems. Photonic Sensors, 2011, vol. 1, no. 3, pp. 210–221. doi: 10.1007/s13320-011-0018-3
5. Wang L., Zhang M., Mao X., Liao Y. The arctangent approach of digital PGC demodulation for optic interferometric sensors. Proceedings of SPIE - The International Society for Optical Engineering, 2006, vol. 6292, art. 62921E. doi: 10.1117/12.678455
6. Plotnikov M.Yu. Volokonno-Opticheskii Gidrofon. Avtoref. dis. kand. tekhn. nauk. [Fiber-Optic Hydrophone. Thesis eng. sci. diss.]. St. Petersburg, NRU ITMO Publ., 2014, 23 p.
7. Yang X., Chen Z., Ng J.H., Pallayil V., Unnikrishnan K.C. A PGC demodulation based on differential-crossmultiplying (DCM) and arctangent (ATAN) algorithm with low harmonic distortion and high stability. Proceedings of SPIE - The International Society for Optical Engineering, 2012, vol. 8421, art. 84215J. doi:
10.1117/12.974939.
8. Tarasov I.E. Razrabotka Tsifrovykh Ustroistv na Osnove PLIS Xilinx s Primeneniem Yazyka VHDL [Development of Digital Devices Based on Xilinx FPGAs Using VHDL language]. Moscow, Goryachaya Liniya- Telekom Publ., 2005, 252 p.
9. Liao F., Zhang M., Wang L., Liao Y. The noise analysis and digital realization of arctangent approach of PGC demodulation for optic interferometric sensors. Proceedings of SPIE - The International Society for Optical Engineering, 2007, vol. 6595, art. 65954A. doi: 10.1117/12.726512
10. Watson G.N. A Treatise on the Theory of Bessel Functions. Cambridge, Cambridge University Press, 1922, 812 p.
11. Volkov A.V., Oskolkova E.S., Plotnikov M.Yu. Modelirovanie i issledovanie algoritmov demodulyatsii signalov volokonno-opticheskikh interferometricheskikh datchikov [Modeling and analysis of algorithms for demodulation of interferometric fiber optic sensors]. Sbornik Tezisov Dokladov III Kongressa Molodykh Uchenykh, vyp. 4 [Proc. III Congress of Young Scientists, vol. 4]. St. Petersburg, NRU ITMO Publ., 2014, pp. 364–365.
12. Bush J., Suh K. Fiber Fizeau interferometer for remote passive sensing. Proceedings of SPIE - The International Society for Optical Engineering, 2012, vol. 8370, art. 83700S. doi: 10.1117/12.921010
13. Miroshnichenko G., Deyneka I., Pogorelaya D., Shuklin F., Smolovik M. Sposob izmereniya fazy interferometricheskogo signala [Method of interferometer signal phase measurement]. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2013, no. 6 (88), pp. 61–67.
14. Plotnikov M.Yu., Deyneka I.G., Sharkov I.A. Modifikatsiya skhemy obrabotki dannykh fazovogo interferometricheskogo akusticheskogo datchika [Data processing scheme modification for phase
interferometrical acoustic sensor]. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2012, no. 5 (81), pp. 20–25.
15. Smith S.W. The Scientist and Engineer's Guide to Digital Signal Processing. 2nd ed. California Technical Publishing, 1999, 650 p.
16. Ingle V.K., Proakis J.G. Digital Signal Processing Using MATLAB. 3rd ed. CL-Engineering, 2011, 672 p.


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2018 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика