doi: doi:10.17586/2226-1494-2015-15-3-373-377


POINT-BY-POINT INSCRIPTION OF FIBER BRAGG GRATINGS INTO BIREFRINGENT OPTICAL FIBER THROUGH PROTECTIVE ACRYLATE COATING BY TI:SA FEMTOSECOND LASER

S. V. Arkhipov, M. Grehn, S. V. Varzhel, V. E. Strigalev, N. Griga, H. J. Eichler


Read the full article  ';
Article in Russian

For citation: Arkhipov S.V., Grehn M., Varzhel S.V., Strigalev V.E., Griga N., Eichler H.J. Point-by-point inscription of fiber Bragg gratings into birefringent optical fiber through protective acrylate coating by Ti:Sa femtosecond laser. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2015, vol.15, no. 3, pp. 373–377.

Abstract

The paper deals withpoint-by-point inscriptionof fiber Bragg gratings by the 800 nm Ti:Sa femtosecond laser pulses into a unique birefringent fiber with elliptical stress cladding of home manufacture. The proposed inscriptionmethod has advantages over the conventional phase mask method. The possibility to create complex grating structures and relatively high transparency of acrylate coating to the Ti:Sa femtosecond laser radiation of 800 nm gives the possibility for inscriptionof phase shifting gratings, chirped grating and superstructures without stripping the fiber. Also, this method makes it possible to inscribethese diffractive structures with and without co-doping of GeO2 in the fiber core. Achieved reflectance was 10%. The microscopic image of the diffractive structure in the fiber core is presented. The grating of 1.07 µm is realized by pulling the fiber with constant speed while the laser pulses are applied with a repetition frequency of 1 kHz. The results are usable in the sphere of creation of different fiber optic sensitive elements based on Bragg gratings.


Keywords: Bragg grating, femtosecond laser, point-by-point inscription, anisotropic fiber, acrylate coating.

Acknowledgements. The work was carried out in Technical University of Berlin and ITMO University under financial support of the Ministry of Education and Science of the Russian Federation (project № 02.G25.31.0044)

References
 
1. Grobnic D., Mihailov S.J., Smelser C.W., Ding H.M. Sapphire fiber Bragg grating sensor made using femtosecond
laser radiation for ultrahigh temperature applications. IEEE Photonics Technology Letters, 2004, vol.
16, no. 11, pp. 2505–2507. doi: 10.1109/LPT.2004.834920
2. Jovanovic N., Еslund M., Fuerbach A., Jackson S.D., Marshall G.D., Withford M.J. Narrow linewidth,100 W
cw Yb3+-doped silica fiber laser with a point-by-point Bragg grating inscribed directly into the active core.
Optics Letters, 2007, vol. 32, no. 19, pp. 2804–2806. doi: 10.1364/OL.32.002804
3. Tre'panier F., Brochu G., Morin M., Mailloux A. High-end FBG design and manufacturing for industrial lasers,
sensing and telecommunications. Proc. Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides,
BGPP 2014. Barcelona, Spain, 2014, p. 2716.
4. Lai Y., Martinez A., Khrushchev I., Bennion I. Distributed Bragg reflector fiber laser fabricated by femtosecond
laser inscription. Optics Letters, 2006, vol. 31, no. 11, pp. 1672–1674. doi: 10.1364/OL.31.001672
5. Wikszak E., Thomas J., Burghoff J., Ortac B., Limpert J., Nolte S., Fuchs U., Tunnermann A. Erbium fiber
laser based on intracore femtosecond-written fiber Bragg grating. Optics Letters, 2006, vol. 31, no. 16, pp.
2390–2392. doi: 10.1364/OL.31.002390
6. Jovanovic N., Thomas J., Williams R.J., Steel M.J., Marshall G.D., Fuerbach A., Nolte S., Tunnermann A.,
Withford M.J. Polarization-dependent effects in point-by-point fiber Bragg gratings enable simple, linearly
polarized fiber lasers. Optics Express, 2009, vol. 17, no. 8, pp. 6082–6095. doi: 10.1364/OE.17.006082
7. Gattass R.R., Mazur E. Femtosecond laser micromachining in transparent materials. Nature Photonics, 2008,
vol. 2, no. 4, pp. 219–225. doi: 10.1038/nphoton.2008.47
8. Schaffer C.B., Brodeur A., Mazur E. Laser-induced breakdown and damage in bulk transparent materials induced
by tightly focused femtosecond laser pulses. Measurement Science and Technology, 2001, vol. 12, no.
11, pp. 1784–1794. doi: 10.1088/0957-0233/12/11/305
9. Grobnic D., Smelser C.W., Mihailov S.J., Walker R.B. Long-term thermal stability tests at 1000 °C of silica
fiber Bragg grating made with ultrafast laser radiation. Measurement Science and Technology, 2006, vol. 17,
no. 5, pp. 1009–1013. doi: 10.1088/0957-0233/17/5/S12
10. Martinez A., Khrushchev I.Y., Bennion I. Thermal properties of fibre Bragg gratings inscribed point-by-point
by infrared femtosecond laser. Electronics Letters, 2005, vol. 41, no. 4, pp. 176–178. doi:
10.1049/el:20057898
11. Vasil'ev S.A., Medvedkov O.I., Korolev I.G., Bozhkov A.S., Kurkov A.S., Dianov E.M. Fibre gratings and
their applications. Quantum Electronics, 2005, vol. 35, no. 12, pp. 1085–1103. doi:
10.1070/QE2005v035n12ABEH013041
12. Geernaert T., Kalli K., Koutsides C., Komodromos M., Nasilowski T., Urbanczyk W., Wojcik J., Berghmans
F., Thienpont H. Point-by-point fiber Bragg grating inscription in free-standing step-index and photonic crystal
fibers using near-IR femtosecond laser. Optics Letters, 2010, vol. 35, no. 10, pp. 1647–1649. doi:
10.1364/OL.35.001647
13. Eron'jan M.A. Process of Manufacture of Fiberous Light Guides Preserving Radiation Polarization. Patent
RF, no. RU2155359, 2000.
14. Bureev S.V., Dukel'skii K.V., Eron'yan M.A., Komarov A.V., Levit L.G., Khokhlov A.V., Zlobin P.A.,
Strakhov V.I. Processing large blanks of anisotropic single-mode lightguides with elliptical cladding. Journal
of Optical Technology (A Translation of Opticheskii Zhurnal), 2007, vol. 74, no. 4, pp. 297–298.
15. Andreev A.G., Kryukov I.I., Mazunina T.V., Poloskov A.A., Tsibinogina M.K., Bureev S.V., Eron'yan M.A.,
Komarov A.V., Ter-Nersesyants E.V. Increasing the birefringence in anisotropic single-mode fiber
lightguides with an elliptical stress cladding. Journal of Optical Technology (A Translation of Opticheskii
Zhurnal), 2012, vol. 79, no. 9, pp. 608–609. doi: 10.1364/JOT.79.000608
16. Petrov A.A., Varzhel S.V., Kulikov A.V., Palanjyan D.A., Gribaev A.I., Konnov K.A. Zapis' reshetok Bregga
ArF eksimernym lazerom v anizotropnom opticheskom volokne [Record of Bragg grating in an anisotropic
optical fiber using ArF excimer laser]. Izvestiya vuzov. Priborostroenie, 2014, vol. 57, no. 6, pp. 31–36.
17. Varzhel S.V., Kulikov A.V., Zakharov V.V., Aseev V.A. Odnoimpul'snaya zapis' i vizualizatsiya
volokonnykh reshetok Bregga tipa II [Single-pulse writing and visualization of type II fiber Bragg gratings].
Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2012, no. 5 (81), pp.
25–28.
18. Mihailov S.J., Smelser C.W., Lu P., Walker R.B., Grobnic D., Ding H., Henderson G., Unruh J. Fiber Bragg
gratings made with a phase mask and 800-nm femtosecond radiation. Optics Letters, 2003, vol. 28, no. 12, pp.
995–997.


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2024 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика