DOI: 10.17586/2226-1494-2015-15-3-405-410


A. I. Altukhov, D. S. Korshunov , E. I. Shabakov

Read the full article 
Article in Russian

For citation: Altukhov A.I., Korshunov D.S, Shabаkov E.I. Requirements for image quality of emergency spacecrafts. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2015, vol.15, no. 3, pp. 405–410.

The paper deals with the method for formation of quality requirements to the images of emergency spacecrafts. The images are obtained by means of remote sensing of near-earth space orbital deployment in the visible range.
of electromagnetic radiation. The method is based on a joint taking into account conditions of space survey, characteristics of surveillance equipment, main design features of the observed spacecrafts and orbital inspection tasks. Method. Quality score is the predicted linear resolution image that gives the possibility to create a complete view of pictorial properties of the space image obtained by electro-optical system from the observing satellite. Formulation of requirements to the numerical value of this indicator is proposed to perform based on the properties of remote sensing system, forming images in the conditions of outer space, and the properties of the observed emergency spacecraft: dimensions, platform construction of the satellite, on-board equipment placement. For method implementation the authors have developed a predictive model of requirements to a linear resolution for images of emergency spacecrafts, making it possible to select the intervals of space shooting and get the satellite images required for quality interpretation. Main results. To verify the proposed model functionality we have carried out calculations of the numerical values for the linear resolution of the image, ensuring the successful task of determining the gross structural damage of the spacecrafts and identifying changes in their spatial orientation. As input data were used with dimensions and geometric primitives corresponding to the shape of deemed inspected spacecrafts: Resurs-P", "Canopus-B", "Electro-L". Numerical values of the linear resolution images have been obtained, ensuring the successful task solution for determining the gross structural damage of spacecrafts.

Keywords: orbital inspection, line image resolution, object identification, quality prediction of space survey.

1. Kucheiko A.A. Unikal'noe primenenie sputnika DZZ – orbital'naya inspektsiya [Unique applications of remote sensing satellite D33 - orbital inspection]. Available at: (accessed: 28.02.2013).
2. Altukhov A.I., Korshunov D.S., Shabakov E.I. Metod povysheniya kachestva snimkov kosmicheskikh ob"ektov [Method of image quality enhancement for space objects]. Scientific and Technical Journal of Information
Technologies, Mechanics and Optics, 2014, no. 4 (92), pp. 35–40.
3. Altukhov A.I., Gnusarev N.V., Korshunov D.S. Prognozirovanie kachestva izobrazhenii kosmicheskikh ob"ektov [Image quality forecasting for space objects]. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2013, no. 3 (85), pp. 36–41.
4. Kontseptsiya razvitiya rossiiskoi kosmicheskoi sistemy distantsionnogo zondirovaniya Zemli na period do 2025 goda [The concept of development of the Russian space remote sensing system until 2025]. Moscow, Federal'noe Kosmicheskoe Agentstvo Publ., 2006, 72 p.
5. Emelyanov S.G., Atakishev O.I., Altukhov A.I., Gnusarev N.V., Korshunov D.S. K voprosu ucheta uslovii osveshchennosti pri s"emke kosmicheskikh ob"ektov fotograficheskimi sredstvami [On accounting lighting conditions to survey space objects photographic means]. Izvestiya Yugo-Zapadnogo Gosudarstvennogo Universiteta, 2012, no. 3–1 (42), pp. 58а–62.
6. Gnusarev N.V. Geodezicheskoe i Ballisticheskoe Obespechenie Kosmicheskikh Sistem Distantsionnogo Zondirovaniya [Geodetic and Ballistic Software of Remote Sensing Space Systems]. St. Petersburg, VKA n.a. A.F. Mozhaiskogo Publ., 2008, 220 p.
7. Chertov A.N., Gorbunova E.V., Korotaev V.V., Peretyagin V.S., Serikova M.G. Simulation of the multicomponent radiation source with the required irradiance and color distribution on the flat illuminated surface. Proceedings of SPIE - The International Society for Optical Engineering, 2012, vol. 8429, art. 84290D. doi: 10.1117/12.922104
8. Korotaev V.V., Timofeev A.N., Ivanov A.G. Problems in the development of optoelectronic systems for monitoring displacements of large-sized objects. Journal of Optical Technology (A Translation of Opticheskii Zhurnal), 2000, vol. 67, no. 4, pp. 336–339.
9. Altukhov A.I., Dudin E.A., Titkov B.V. Tekhnologiya kompressii izobrazhenii bol'shikh razmerov [Fairsized images compression technology]. Nauchno-Tekhnicheskie Vedomosti SPbGPU. Informatika. Telekommunikatsii. Upravlenie, 2009, vol. 1, no. 72, pp. 46–51.
10. Avdeev S.P. Analiz i Sintez Optiko-Elektronnykh Priborov [Analysis and Synthesis of Optoelectronic Devices]. St. Petersburg, Pravda Publ., 2000, 680 p.
11. Khartov V.V., Efanov V.V., Zanin K.A. Osnovy Proektirovaniya Orbital'nykh Optiko-Elektronnykh Kompleksov [Basis of design orbital optoelectronic systems]. Moscow, MAI Publ., 2011, 127 p.
12. Zanin K.A. Vybor parametrov optiko-elektronnoi kosmicheskoi sistemy nablyudeniya po kachestvu izobrazheniya [Image quality based selection of parameters of optical-electronic space observation system]. Polet. Obshcherossiiskii Nauchno-Tekhnicheskii Zhurnal, 2007, no. 11, pp. 30–37.
13. Tsytsulin A.K. Televidenie i Kosmos [Television and Space]. St. Petersburg, SPbGETU «LETI» Publ., 2003, 228 p.
14. Grigor'ev A.N., Korshunov D.S., Belyaev A.S. Prognozirovanie kachestva kosmicheskikh snimkov kosmicheskikh sistem distantsionnogo zondirovaniya [Forecasting quality satellite images of space remote sensing systems]. Trudy Voenno-Kosmicheskoi Akademii im. A.F. Mozhaiskogo, 2010, no. 629, pp.143–147.
Copyright 2001-2017 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.