doi: 10.17586/2226-1494-2015-15-3-449-456


PROPERTIES AND OPTICAL APPLICATION OF POLYCRYSTALLINE ZINC SELENIDE OBTAINED BY PHYSICAL VAPOR DEPOSITION

A. A. Dunaev, I. L. Egorova


Read the full article  ';
Article in Russian

For citation: Dunaev A.A., Egorova I.L. Properties and optical application of polycrystalline zinc selenide obtained by physical vapor deposition. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2015, vol.15, no. 3, pp. 449–456.

Abstract
Findings on production technology, mechanical and optical properties of polycrystalline zinc selenide are presented. The combination of its physicochemical properties provides wide application of ZnSe in IR optics. Production technology is based on the method of physical vapor deposition on a heated substrate (Physical Vapor Deposition - PVD). The structural features and heterogeneity of elemental composition for the growth surfaces of ZnSe polycrystalline blanks were investigated using CAMEBAX X-ray micro-analyzer. Characteristic pyramid-shaped crystallites were recorded for all growth surfaces. The measurements of the ratio for major elements concentrations show their compliance with the stoichiometry of the ZnSe compounds. Birefringence, optical homogeneity, thermal conductivity, mechanical and optical properties were measured. It is established that regardless of polycrystalline condensate columnar and texturing, the optical material is photomechanically isotropic and homogeneous. The actual performance of parts made of polycrystalline optical zinc selenide in the thermal spectral ranges from 3 to 5 μm and from 8 to 14 μm and in the CO2 laser processing plants with a power density of 500 W/cm2 is shown. The developed technology gives the possibility to produce polycrystalline optical material on an industrial scale.

Keywords: zinc selenide, polycrystal, technology, raw materials, properties, application.

References
1. Petrovsky G.T. Novye opticheskie stekla i kristally [New optical glass and crystals]. Optiko- Mekhanicheskaya Promyshlennost', 1978, no. 12, pp. 13–17.
2. Gaussorgues G. La Thermographie Infrarouge. Principes-Technologie-Applications. Paris, Lavoisier, 1984, 400 p.
3. Senik B.N. Primenenie kristallov v perspektivnykh razrabotkakh giperspektral'nykh opticheskikh system [Application of crystals in perspective development of hyperspectral optical systems]. Prikladnaya Fizika, 2007, no. 3, pp. 136–142.
4. Tsirlin Yu.A., Globus M.E., Sysoeva E.P. Optimizatsiya Detektirovaniya Gamma-Izlucheniya Stsintillyatsionnymi Kristallami [Optimization of the Gamma-Rays Detection by Scintillation Crystals]. Moscow, Energoatomizdat Publ., 1991, 152 p.
5. Schotanus P., Dorenbos P., Ryzhikov V.D. Detection of CdS(Te) and ZnSe(Te) scintillation light with silicon photodiodes. IEEE Transactions on Nuclear Science, 1992, vol. 39, no. 4, pp. 546–550. doi: 10.1109/23.159663
6. Carrig T.J., Wagner G.J., Sennaroglu A., Jeong J.Y., Pollock C.R. Mode-locked Cr2+ ZnSe laser. Optics Letters, 2000, vol. 25, no. 3, pp. 168–170.
7. Adams J.J., Bibeau C., Page R.H., Krol D.M., Furu L.H., Payne S.A. 4.0–4.5-μm lasing of Fe:ZnSe below 180 K, a new mid-infrared laser material. Optics Letters, 1999, vol. 24, no. 23, pp. 1720–1722.
8. Kozlovsky V.I., Akimov V.A., Frolov M.P., Korostelin Yu.V., Landman A.I., Martovitsky V.P., Mislavskii V.V., Podmar'kov Yu.P., Skasyrsky Ya.K., Voronov A.A. Room-temperature tunable mid-infrared lasers on transition-metal doped II–VI compound crystals grown from vapor phase. Physica Status Solidi (B) Basic
Research, 2010, vol. 247, no. 6, pp. 1553–1556. doi: 10.1002/pssb.200983165
9. Akimov V.A., Frolov M.P., Korostelin Yu.V., Kozlovsky V.I., Landman A.I., Podmar'kov Yu.P., Voronov A.A. Vapour growth of II-VI single crystals doped by transition metals for mid-infrared lasers. Physica Status Solidi C: Conferences, 2006, vol. 3, no. 4, pp. 1213–1216. doi: 10.1002/pssc.200564723
10. Ozgur U., Alivov Ya.I., Liu C., Teke A., Reshchikov M.A., Dogan S., Avrutin V., Cho S.-J., Morko H. A comprehensive review of ZnO materials and devices. Journal of Applied Physics, 2005, vol. 98, no. 4, art. 041301, pp. 1–103. doi: 10.1063/1.1992666
11. Haas M.A., Cheng H., Dep'yudt D.M., Ki Y. Sine-Zelenyi Lazernyi Diod [Blue-Green Laser Diode]. Patent RU 2127478, 1999.
12. Petrovsky G.T. Optical materials for infrared range of spectrum. Proc. SPIE, 1991, vol. 1540, pp. 401–411.
13. Yoshida H., Fujii T., Kamata A., Nakata Y. Undoped ZnSe single crystal growth by the vertical Bridgman method. Journal of Crystal Growth, 1992, vol. 117, no. 1–4, pp. 75–79. doi: 10.1016/0022-0248(92)90719-Y
14. Goela J.S., Taylor R.L. Monolithic material fabrication by chemical vapour deposition. Journal of Materials Science, 1988, vol. 23, no. 12, pp. 4331–4339. doi: 10.1007/BF00551927
15. Yakushenkov Yu.G. Tendentsii razvitiya malogabaritnykh infrakrasnykh sistem 3-go pokoleniya, rabotayushchikh aktivno-passivnym metodom [Development tendencies of compact third generation infared systems based on active-passive method]. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2012, no. 3 (79), pp. 11–14.
16. Tarasov V.V., Yakushenkov Y.G. Sovremennoe sostoyanie i perspektivy razvitiya zarubezhnykh teplovizionnykh sistem [Modern state and development perspectives of foreign infared imagers]. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2013, no. 3 (85), pp. 1–13.
17. Mattox D.M. Handbook of Physical Vapor Deposition (PVD) Processing. 2nd ed. Elsevier Inc., 2010, 771 p.
18. Korotaev V.V., Mel'nikov G.S., Mikheev S.V., Samkov V.M., Soldatov Yu.I. Osnovy Teplovideniya [Basics of Thermovision]. St. Petersburg, NIU ITMO Publ., 2012, 122 p.
19. Petrovsky G.T., Borozdin S.N., Demidenko V.A. et. al. Opticheskie kristally i polikristally [Optical crystal and polycrystalline]. Opticheskii Zhurnal, 1993, no. 11, pp. 77–93.


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2024 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика