DOI: 10.17586/2226-1494-2015-15-4-661-675


M. . Stolbov

Read the full article 
Article in Russian

For citation: Stolbov M.B. Application of microphone arrays for distant speech capture. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2015, vol.15, no. 4, pp. 661–675.

Application of microphone arrays and beamforming techniques for speech information collection has significant advantages compared to systems operating with a single microphone. This paper presents a brief overview of microphone array systems for collecting distant speech information. The paper is based on an analysis of publications on the use of microphone arrays for speech information collection tasks, as well as on the author’s experience in the development and practical application of planar microphone arrays. The paper describes the main stages of the development of systems for remote capture of audio information. It provides a review of the main applications of microphone arrays, the basic types of microphone arrays and their features. The bulk of the paper deals with planar microphone arrays. We analyze the work of microphone arrays in different acoustic environments. The paper contains the basic equations for calculating the parameters of equidistant planar microphone arrays. Some methods of designing non-equidistant arrays are also mentioned (a list of references is included). We also provide a list of basic digital signal processing algorithms for planar microphone arrays, as well as a list of references on processing algorithms in the frequency domain. The paper includes a list of foreign companies offering systems based on microphone arrays for a wide range of tasks associated with the processing of speech and audio signals. We describe some state-of-the-art speech information collection systems based on microphone arrays. Some promising directions for the development of speech information collection systems using microphone arrays are described in conclusion. The material of the review is usable in designing of microphone arrays for specific practical applications.

Keywords: microphone arrays, beamforming, array geometry, directivity pattern, digital signal processing algorithms for microphone arrays, distant speech capture.

Acknowledgements. This work has been partially financially supported by the Government of the Russian Federation (grant 074-U01).

1. Khorev A.A. Sredstva akusticheskoi razvedki: napravlennye mikrofony i lazernye akusticheskie sistemy razvedki [Means acoustic reconnaissance: array microphones and speakers laser reconnaissance]. Spetstekhnika i Svyaz', 2008, no. 3, pp. 34–43.
2. Gatchin Yu.A., Karpik A.P., Tkachev K.O., Chikov K.N., Shlishevskii V.B. Teoreticheskie Osnovy Zashchity Informatsii ot Utechki po Akusticheskim Kanalam. Uchebnoe Posobie [Theoretical Bases of Information Protection from Leakage by Acoustic Channels. Handbook]. Novosibirsk, SGGA Publ., 2008, 194 p.
3. Microphone Arrays. Signal Processing Techniques and Applications / Eds. M. Brandstein, D. Ward. Springer- Verlag, 2001, 402 p.
4. Van Trees H.L. Detection, Estimation and Modulation Theory, Part IV: Optimum Array Processing. NY, Wiley, 2002, 1470 p.
5. Johnson D.H., Dudgeon D.E. Array Signal Processing. Concepts and Techniques. Prentice Hall, 1993, 537 p.
6. Rayburn R.A. Eargle's Microphone Book: From Mono to Stereo to Surround. A Guide to Microphone Design and Application. 3rd ed. Focal Press, 2012, 480 p.
7. Benesty J., Chen J., Huang Y. Microphone Array Signal Processing. Springer, 2008, 240 p.
8. Springer Handbook of Speech Processing / Eds. J. Benesty, M.M. Sondhi, Y. Huang. Springer, 2008, 1159 p.
9. Tashev I.J. Sound Capture and Processing: Practical Approaches. Wiley, 2009, 388 p.
10. Speech Enhancement / Eds. J. Benesty, S. Makino, J. Chen. Berlin, Springer, 2010, 415 p.
11. Benesty J., Chen J. Study and Design of Differential Microphone Arrays. Springer, 2013, 184 p.
12. Zvukometriya. Posobie dlya Artilleriiskikh Uchilishch RKKA [Sound Ranging. A Handbook for Red Army Artillery School]. Moscow, Narkomat Oborony USSR, 1938, 222 p.
13. Naumenko I., Kizima V. Uzkonapravlennaya Fazirovannaya Antennaya Reshetka dlya Distantsionnogo Proslushivaniya Istochnikov Rechevoi Informatsii. Available at: (accessed 20.04.2015).
14. Schelkunoff S.A. A mathematical theory of linear arrays. Bell System Technical Journal, 1943, vol. 22, pp. 80–107.
15. Frost O.L. An algorithm for linearly constrained adaptive array processing. Proceedings of the IEEE, 1972, vol. 60, no. 8, pp. 926–935. doi: 10.1109/PROC.1972.8817
16. Ma M.T. Theory and Application of Antenna Arrays. NY, Wiley, 1974, 430 p.
17. Applebaum S. Adaptive arrays. IEEE Transactions on Antennas Propagation, 1976, vol. AP–24, no. 5, pp. 585–598.
18. Griffiths L.J., Jim C.W. Alternative approach to linearly constrained adaptive beamforming. IEEE Transactions on Antennas and Propagation, 1982, vol. AP–30, no. 1, pp. 27–34.
19. Dudgeon D.P., Mersereau R.M. Multidimensional Digital Signal Processing. London, Prentice-Hall, 1984, 406 p.
20. Monzingo R.A., Miller T.W. Introduction to Adaptive Arrays. NY, John Wiley and Sons, 1980.
21. Widrow B., Stearns S.D. Adaptive Signal Processing. Upper Saddle River, Prentice Hall, 1985.
22. Lewis J. Analog and Digital MEMS Microphone Design Considerations. Technical Article MS-2472. Analog Devices, 2013, 4 p.
23. Taylor R. Noise. 2nd ed. Penguin Books, 1975.
24. Dillon H. Hearing Aid Technology and the Future. Available at: (accessed 20.04.2015).
25. Microphone Array Beamforming. Application Note AN–1140. Available at: (accessed 20.04.2015).
26. McCowan I.A. Microphone Arrays: A Tutorial. Available at: (accessed 20.04.2015).
27. Peral-Orts R., Velasco-Sanchez E., Campillo-Davo N., Camello-Vicente H. Using microphone arrays to detect moving vehicle velocity. Archives of Acoustics, 2013, vol. 38, no. 3, pp. 407–415. doi: 10.2478/aoa-2013-0048
28. Array Technology and Beamforming. Available at: (accessed 20.04.2015).
29. Grythe J. Acoustic Camera and Beampattern. Norsonic Application Note, 2014, 8 p. Available at: (accessed 20.04.2015).
30. Meo Ti Ha. Ispol'zovanie mikrofonnykh reshetok dlya uluchsheniya kachestva zapisyvaemogo signala v usloviyakh sil'nogo shuma [Using microphone arrays to improve the quality of the recorded signal in high noise]. Nauchnaya Sessiya MIFI, 2007, vol. 1, pp. 153–154.
31. Kodrasi I., Rohdenburg T., Doclo S. Microphone position optimization for planar superdirective beamforming. Proc. IEEE Int. Conf. on Acoustic, Speech and Signal Processing, ICASSP. Prague, Czech Republic, 2011, pp. 109–112. doi: 10.1109/ICASSP.2011.5946340
32. Christensen J.J., Hald J. Beamforming. Brüel & Kjær Technical Review, 2004, no. 1, pp. 1–48.
33. Perrodin F., Nikolic J., Busset J., Siegwart R. Design and calibration of large microphone arrays for roboticapplications. Proc IEEE International Conference on Intelligent Robots and Systems. Vilamoura, Algarve,
Portugal, 2012, pp. 4596–4601. doi: 10.1109/IROS.2012.6385985
34. Quaranta V., Dimino I., D’Altrui G. Acoustic antenna design general guidelines for beamforming noise source localization. Proc. 14th International Congress on Sound and Vibration, ICSV14. Australia, 2007, vol. 5, pp. 4172–4179.
35. Rabinkin D., Renomeron R., French J., Flanagan J.L. Optimum sensor placement for array sound capture. Proceedings of SPIE, 1997, vol. 3162, pp. 227–239. doi: 10.1117/12.284187
36. Hodjat F., Hovahessian S.A. Nonuniformly spaced linear and planar array antennas for sidelobe reduction. IEEE Transactions on Antennas and Propagation, 1978, vol. AP–26, no. 2, pp. 198–204.
37. Steinberg B. Principles of Aperture and Array System Design: Including Random and Adaptive Arrays. NY, Wiley, 1976, 77 p.
38. Shanan S.S., Pomalaza-Raez C.A. The use of nonuniform element spacing in array processing algorithms. Journal of Acoustical Society of America, 1989, vol. 86, no. 4, pp. 1416–1418.
39. Gaokar R., Cheeran A. Performance analysis of beamforming algorithms. International Journal of Electronics and Communication Technology, 2011, vol. 2, no. 1, pp. 43–48.
40. Singh H., Jha R.M. Trends in Adaptive Array Processing. International Journal of Antennas and Propagation, 2012, vol. 2012, art. 361768. doi: 10.1155/2012/361768
41. Krivosheikin A.V., Perelygin S.V. Microphone array for directional acoustic antenna implementation. Izv. vuzov. Priborostroenie, 2015, vol. 58, no. 3, pp. 221–225. (in Russian) doi: 10.17586/0021-3454-2015-58-3-221-225
42. Krivosheykin A.V., Perelygin S.V. Microphone array modeling. Mir Tekhniki Kino, 2015, no. 1 (35), pp. 22–26.
43. Stolbov M.B., Zubov G.N. Programmnye sredstva shumoochistki zapisei rechi [Software for speech denoising]. Rechevye Tekhnologii, 2014, no. 1–2, pp. 103–113.
44. Meo Ti Ha. Sovremennoe sostoyanie i perspektivy razvitiya mikrofonnykh reshetok [Current state and development prospects of microphone arrays]. Nauchnaya Sessiya MIFI, 2007, vol. 17, pp. 81–82.
45. Mal'var E.S., Tashev I. System and Method for Beam Formation Using Microphone Grid. Patent
RU2369042, 2009.
46. Norsonic. Available at: (accessed 20.04.2015).
47. Squarehead Technology. Available at: (accessed 20.04.2015).
48. Buck M., Rößler M. First order differential microphone arrays for automotive applications. Proc. 7th International Workshop on Acoustic Echo and Noise Control, IWAENC. Darmstadt, Germany, 2001, pp. 19–22.
49. Borowicz A., Petrovsky A. Incorporating auditory properties into generalised sidelobe canceller. Proc. 20th European Signal Processing Conference. Bucharest, Romania, 2012, pp. 589–593.
50. Bertrand A. Applications and trends in wireless acoustic sensor networks: a signal processing perspective. Proc. 18th IEEE Symposium on Communications and Vehicular Technology in the Benelux, SCVT 2011. Ghent, Belgium, 2011, art. 6101302. doi: 10.1109/SCVT.2011.6101302
51. McCowan I.A., Krishna M.H. Gatica-Perez D., Moore D., Ba S. Speech acquisition in meetings with an audio-visual sensor array. Proc. IEEE International Conference on Multimedia and Expo, ICME 2005. Amsterdam, 2005, pp. 1382–1385. doi: 10.1109/ICME.2005.1521688
Copyright 2001-2017 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.