doi: 10.17586/2226-1494-2015-15-6-984-999


ANALYSIS OF PERIODIC NANOSTRUCTURES FORMATION ON A GOLD SURFACE UNDER EXPOSURE TO ULTRASHORT LASER PULSES NEAR THE MELTING THRESHOLD

D. S. Ivanov, V. P. Lipp, A. Blumenstein, V. P. Veiko, Y. B. Yakovlev, V. V. Roddatis, M. E. Carcia, B. Rethfeld, J. Ihlemann, P. Simon


Read the full article  ';
Article in Russian

For citation: Ivanov D.S., Lipp V.P., Blumenstein A., Veiko V.P., Yakovlev E.B., Roddatis V.V., Garcia M.E., Rethfeld B., Ihlemann J., Simon P. Analysis of periodic nanostructures formation on a gold surface under exposure to ultrashort laser pulses near the melting threshold. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2015, vol. 15, no. 6, pp. 984–999.

Abstract
Subject of Study. The mechanism of surface restructuring by ultrashort laser pulses involves a lot of fast, non-equilibrium, and interrelated processes while the solid is in a transient state. As a result, the analysis of the experimental data cannot cover all the mechanisms of nanostructuring. We present a direct comparison of a simulation and experimental results of surface nanomodification induced by a single laser pulse. Method. The experimental results were obtained by using a mask projection setup with a laser wavelength equal to 248 nm and a pulse length equal to 1.6 ps. This setup is used to produce an intensity grating on a gold surface with a sinusoidal shape and a period of 500 nm. The formed structures were analyzed by a scanning and transmission electron microscope, respectively. Then a hybrid atomistic-continuum model capable of capturing
the essential mechanisms responsible for the nanostructuring process was used for modeling the interaction of the laser pulse with a thick gold target. Main Results. A good agreement between simulation and experimental data justifies the proposed approach as a powerful tool revealing the physics behind the nanostructuring process at a gold surface and providing a microscopic insight into the dynamics of the structuring processes of metals in general. The presented model, therefore, is an important step towards a new computational tool in predicting materials response to an ultrashort laser pulse on the atomic scale and properties of the modified surfaces. Practical Relevance. This detailed understanding of the dynamics of the process will pave the way towards pre-designed topologies for functionalized surfaces on the nano- and micro-scales.

Keywords: nanostructurization, ultra short laser pulses, molecular dynamics, periodic nanostructures

Acknowledgements. The presented work has been completed under financial support of the Russian Federation Government grant 074-U01, the Leading State Universities of the Russian Federation subsidy, NSH 1364.2014.2, and DFG grants IV 122/1-1, IV 122/1-2, IH 17/18-1, RE 1141/14, and GA 465/15-1. We thank V. Radisch from Georg-August-Universität Göttingen for preparing the sample cross section by FIB. The numerical simulations were performed on the facility of ITS computer center of the University of Kassel.

References

1. Bäuerle D.W. Laser Processing and Chemistry. 4th ed. Springer, 2011, 873 p. doi: 10.1007/978-3-642-17613-5
2. Simon P., Ihlemann J. Machining of submicron structures on metals and semiconductors by ultrashort
UV-laser pulses. Applied Physics A: Materials Science and Processing, 1996, vol. 63, no. 5, pp. 505–508.
3. Klein-Wiele J.-H., Simon P. Sub-100nm pattern generation by laser direct writing using a confinement layer. Optics Express, 2013, vol. 21, no. 7, pp. 9017–9023. doi: 10.1364/OE.21.009017
4. Ihlemann J. Patterning of oxide thin films by UV laser ablation. Journal of Optoelectronics and Advances Materials, 2005, vol. 7, no. 3, pp. 1191–1195.
5. Stoian R., Colombier J.P., Mauclair C., Cheng G., Bhuyan M.K., Velpula P.K., Srisungsitthisunti P. Spatial and temporal laser pulse design for material processing on ultrafast scales. Applied Physics A: Materials Science and Processing, 2014, vol. 114, no. 1, pp. 119–127. doi: 10.1007/s00339-013-8081-9
6. Gallais L., Bergeret E., Wang B., Guerin M., Benevent E. Ultrafast laser ablation of metal films on flexible substrates. Applied Physics A: Materials Science and Processing, 2014, vol. 115, no. 1, pp. 177–188. doi: 10.1007/s00339-013-7901-2
7. Korte F., Koch J., Chichkov B.N. Formation of microbumps and nanojets on gold targets by femtosecond laser pulses. Applied Physics A: Materials Science and Processing, 2004, vol. 79, no. 4–6, pp. 879–881.
8. Kuznetsov A.I., Koch J., Chichkov B.N. Nanostructuring of thin gold films by femtosecond lasers. Applied Physics A: Materials Science and Processing, 2009, vol. 94, no. 2, pp. 221–230. doi: 10.1007/s00339-008-4859-6
9. Nakata Y., Okada T., Maeda M. Nano-sized hollow bump array generated by single femtosecond laser pulse. Japanese Journal of Applied Physics, Part 2: Letters, 2003, vol. 42, no. 12, pp. L1452–L1454.
10. Nakata Y., Miyanaga N., Okada T. Effect of pulse width and fluence of femtosecond laser on the size of nanobump array. Applied Surface Science, 2007, vol. 253, no. 15, pp. 6555–6557. doi: 10.1016/j.apsusc.2007.01.080
11. Ihlemann J., Klein-Wiele J.-H., Bekesi J., Simon P. UV ultrafast laser processing using phase masks. Journal of Physics: Conference Series, 2007, vol. 59, no. 1, pp. 449–452. doi: 10.1088/1742-6596/59/1/096
12. Bekesi J., Simon P., Ihlemann J. Deterministic sub-micron 2D grating structures on steel by UV-fs-laser interference patterning. Applied Physics A: Materials Science and Processing, 2014, vol. 114, no. 1, pp.
69–73. doi: 10.1007/s00339-013-8083-7
13. Borchers B., Békési J., Simon P., Ihlemann J. Submicron surface patterning by laser ablation with short UV pulses using a proximity phase mask setup. Journal of Applied Physics, 2010, vol. 107, no. 6, art. 063106. doi: 10.1063/1.3331409
14. Wortmann D., Koch J., Reininghaus M., Unger C., Hulverscheidt C., Ivanov D.S., Chichkov B.N. Experimental and theoretical investigation on fs-laser-induced nanostructure formation on thin gold films. Journal of Laser Applications, 2012, vol. 24, no. 4, art. 042017. doi: 10.2351/1.4734048
15. Apel O., Beinhorn F., Ihlemann J., Klein-Wiele J.-H., Marowsky G., Simon P. Periodic nanostructures. Zeitschrift für physikalische Chemie, 2000, vol. 214, no. 9, pp. 1233–1250.
16. Eisele C., Nebel C.E., Stutzmann M. Periodic light coupler gratings in amorphous thin film solar cells. Journal of Applied Physics, 2001, vol. 89, no. 12, pp. 7722–7726. doi: 10.1063/1.1370996
17. Chen J.-T., Lai W.-C., Kao Y.-J., Yang Y.-Y., Sheu J.-K. Laser-induced periodic structures for light extraction efficiency enhancement of GaN-based light emitting diodes. Optics Express, 2012, vol. 20, no. 5, pp. 5689–5695. doi: 10.1364/OE.20.005689
18. Wang C., Chang Y.-C., Yao J., Luo C., Yin S., Ruffin P., Brantley C., Edwards E. Surface enhanced Raman spectroscopy by interfered femtosecond laser created nanostructures. Applied Physics Letters, 2012, vol. 100, no. 2, art. 023107. doi: 10.1063/1.3676040
19. Meshcheryakov Y.P., Bulgakova N.M. Thermoelastic modeling of microbump and nanojet formation on nanosize gold films under femtosecond laser irradiation. Applied Physics A: Materials Science and Processing, 2005, vol. 82, no. 2, pp. 363–368. doi: 10.1007/s00339-005-3319-9
20. Rethfeld B., Sokolowski-Tinten K., von der Linde D., Anisimov S.I. Ultrafast thermal melting of
laser-excited solids by homogeneous nucleation. Physical Review B – Condensed Matter and Materials Physics, 2002, vol. 65, art. 092103.
21. Ivanov D.S., Zhigilei L.V. Effect of pressure relaxation on the mechanisms of short-pulse laser melting. Physical Review Letters, 2003, vol. 91, no. 10, pp. 1057011–1057014.
22. Remington B.A., Bazan G., Belak J., Bringa E., Caturla M., Colvin J.D., Edwards M.J., Glendinning S.G., Ivanov D.S., Kad B., Kalantar D.H., Kumar M., Lasinski B.F., Lorenz K.T., McNaney J.M., Meyerhofer D.D., Meyers M.A., Pollane S.M., Rowley D., Schneider M., Stolken J.S., Wark J.S., Weber S.V., Wolfer W.G., Yaakobi B., Zhigilei L.V. Materials science under extreme conditions of pressure and strain rate. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2004, vol. 35, no. 9, pp. 2587–2607.
23. Ivanov D.S., Zhigilei L.V. Combined atomistic-continuum modelling of short-pulse laser melting and disintegration of metal films. Physical Review B - Condensed Matter and Materials Physics, 2003, vol. 68, no. 6, art. 064114. P. 064114¬-1–064114-22.
24. Anisimov S.I., Kapeliovich B.L., Perel'man T.L. Electron emission from metal surfaces exposed to ultrashort laser pulses. Sov. Phys. JETP, 1974, vol. 39, no. 2, pp. 375–377.
25. Leveugle E., Ivanov D.S., Zhigilei L.V. Photomechanical spallation of molecular and metal targets: molecular dynamics study. Applied Physics A: Materials Science and Processing, 2004, vol. 79, no. 7, pp. 1643–1655. doi: 10.1007/s00339-004-2682-2
26. Zhigilei L.V., Lin Z., Ivanov D.S. Atomistic modeling of short pulse laser ablation of metals: connections between melting, spallation, and phase explosion. Journal of Physical Chemistry C, 2009, vol. 113, no. 27, pp. 11892–11906. doi: 10.1021/jp902294m
27. Ivanov D.S., Lipp V.P., Rethfeld B., Garcia M.E. Molecular-dynamics study of the mechanism of short-pulse laser ablation of singlecrystal and polycrystalline metallic targets. Journal of Optical Technology, 2014, vol. 81, no. 5, pp. 250–253. doi: 10.1364/JOT.81.000250
28. Ivanov D.S., Rethfeld B., O’Connor G.M., Glynn T.J., Volkov A.N., Zhigilei L.V. The mechanism of nanobump formation in femtosecond pulse laser nanostructuring of thin metal films. Applied Physics A: Materials Science and Processing, 2008, vol. 92, no. 4, pp. 791–796. doi: 10.1007/s00339-008-4712-y
29. Ivanov D.S., Kuznetsov A.I., Lipp V.P., Rethfeld B., Chichkov B.N., Garcia M.E., Schulz W. Short laser pulse nanostructuring of metals: direct comparison of molecular dynamics modeling and experiment. Applied Physics A: Materials Science and Processing, 2013, vol. 111, pp. 675–687. doi: 10.1007/s00339-013-7656-9
30. Lipp V.P., Rethfeld B., Garcia M.E., Ivanov D.S. Atomistic-continuum modeling of short laser pulse melting of Si targets. Physical Review B - Condensed Matter and Materials Physics, 2014, vol. 90, no. 24, art. 245306. doi: 10.1103/PhysRevB.90.245306
31. Nagy T., Simon P. Single-shot TG FROG for the characterization of ultrashort DUV pulses. Optics Express, 2009, vol. 17, no. 10, pp. 8144–8151. doi: 10.1364/OE.17.008144
32. Palik E.D. Handbook of Optical Constants of Solids, Volumes I, II, and III: Subject Index and Contributor Index. NY, Academic Press, 1985.
33. Landau L.D. Theory of Fermi liquid. Sov. Phys. JETP, 1956, vol. 3, no. 6, pp. 920–925.
34. Schäfer C., Urbassek H.M., Zhigilei L.V., Garrison B.J. Pressure-transmitting boundary conditions for molecular dynamics simulations. Computational Materials Science, 2002, vol. 24, no. 4, pp. 421–429. doi: 10.1016/S0927-0256(01)00263-4
35. Zhakhovskii V.V., Inogamov N.A., Petrov Yu.V., Ashitkov S.I., Nishihara K. Molecular dynamics simulation of femtosecond ablation and spallation with different interatomic potentials. Applied Surface Science, 2009, vol. 255, no. 24, pp. 9592–9596. doi: 10.1016/j.apsusc.2009.04.082
36. Smithell’s Metal Reference Book. 8th ed. Eds. W.F. Gale, T.C. Totemeier. Butterworth-Heinemann, Oxford, 2004.
37. Morris J.R., Song X. The melting lines of model systems calculated from coexistence simulations. Journal of Chemical Physics, 2002, vol. 116, no. 21, pp. 9352–9358. doi: 10.1063/1.1474581
38. Lin Z., Zhigilei L.V., Celli V. Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium. Physical Review B - Condensed Matter and Materials Physics, 2008, vol. 77, no. 7, art. 075133. doi: 10.1103/PhysRevB.77.075133
39. Anisimov S.I., Rethfeld B. On the theory of ultrashort laser pulse interaction with a metal. Proc. SPIE, 1997, vol. 3093, pp. 192–203.
40. Hohlfeld J., Wellershoff S.-S., Güdde J., Conrad U., Jähnke V., Matthias E. Electron and lattice dynamics following optical excitation of metals. Chemical Physics, 2000, vol. 251, no. 1-3, pp. 237–258.
41. Petrov Yu.V., Migdal K.P., Inogamov N.A., Zhakhovsky V.V. Two-temperature equation of state for aluminum and gold with electrons excited by an ultrashort laser pulse. Applied Physics B: Lasers and Optics, 2015. doi: 10.1007/s00340-015-6048-6
42. Inogamov N.A., Zhakhovskii V.V., Ashitkov S.I., Khokhlov V.A., Petrov Yu.V., Komarov P.S., Agranat M.B., Anisimov S.I., Nishihara K. Two-temperature relaxation and melting after absorption of femtosecond laser pulse. Applied Surface Science, 2009, vol. 255, no. 24, pp. 9712–9716. doi: 10.1016/j.apsusc.2009.04.139
43. Wang X.Y., Riffe D.M., Lee Y.-S., Downer M.C. Time-resolved electron-temperature measurement in a highly excited gold target using femtosecond thermionic emission. Physical Review B - Condensed Matter and Materials Physics, 1994, vol. 50, no. 11, pp. 8016–8019. doi: 10.1103/PhysRevB.50.8016
44. Ivanov D.S., Lin Z., Rethfeld B.C., O’Connor G.M., Glynn T.J., Zhigilei L.V. Nanocrystalline structure of nanobump generated by localized photoexcitation of metal film. Journal of Applied Physics, 2010, vol. 107, no. 1, art. 013519. doi: 10.1063/1.3276161
45. Gilvarry J.J. The Lindemann and Gruneisen laws. Physics Review, 1956, vol. 102, no. 2, pp. 308–316. doi: 10.1103/PhysRev.102.308
46. Kelchner C.L., Plimpton S.J., Hamilton J.C. Dislocation nucleation and defect structure during surface indentation. Physical Review B - Condensed Matter and Materials Physics, 1998, vol. 58, no. 17, pp.
11085–11088.
47. Ivanov D.S., Lipp V.P., Veiko V.P., Jakovlev E., Rethfeld B., Garcia M.E. Molecular dynamics study of the short laser pulse ablation: quality and efficiency in production. Applied Physics A: Materials Science and Processing, 2014, vol. 117, no. 4, pp. 2133–2141. doi: 10.1007/s00339-014-8633-7
48. Inogamov N.A., Zhakhovskii V.V., Ashitkov S.I., Petrov Yu.V., Agranat M.B., Anisimov S.I., Nishihara K., Fortov V.E. Nanospallation induced by an ultrashort laser pulse. Journal of Experimental and Theoretical Physics, 2008, vol. 107, no. 1, pp. 1–19. doi: 10.1134/S1063776108070017
49. Upadhyay A.K., Inogamov N.A., Rethfeld B., Urbassek H.M. Ablation by ultrashort laser pulses: atomistic and thermodynamic analysis of the processes at the ablation threshold. Physical Review B - Condensed Matter and Materials Physics, 2008, vol. 78, no. 4, art. 045437. doi: 10.1103/PhysRevB.78.045437
50. Wu B., Shin Y.C. A self-closed thermal model for laser shock peening under the water confinement regime configuration and comparisons to experiments. Journal of Applied Physics, 2005, vol. 97, no. 11, art. 113517. doi: 10.1063/1.1915537
51. Nakano H., Miyauti S., Butani N., Shibayanagi T., Tsukamoto M., Abe N. Femtosecond laser peening of stainless steel. Journal of Laser Micro Nanoengineering, 2009, vol. 4, no. 1, p. 35. doi: 10.2961/jlmn.2009.01.0007
52. Nakano H., Tsuyama M., Miyauti S., Shibayanagi T., Tsukamoto M., Abe N. Femtosecond and nanosecond laser peening of stainless steel. Journal of Laser Micro Nanoengineering, 2010, vol. 5, no. 2, pp. 175–178. doi: 10.2961/jlmn.2010.02.0014
53. Cheng G.J., Shehadeh M.A. Dislocation behavior in silicon crystal induced by laser shock peening: a multiscale simulation approach. Scripta Materialia, 2005, vol. 53, no. 9, pp. 1013–1018. doi: 10.1016/j.scriptamat.2005.07.014
54. Wellershoff S.-S., Hohlfeld J., Gudde J., Matthias E. The role of electron–phonon coupling in femtosecond laser damage of metals. Applied Physics A: Materials Science and Processing, 1999, vol. 69, no. 7, pp.
S99–S107. doi: 10.1007/s003399900305
55. Veiko V.P., Shakhno Е.А., Yakovlev E.B. Effective time of thermal effect of ultrashort laser pulses on dielectrics. Quantum Electronics, 2014, vol. 44, no. 4, pp. 322–324. doi: 10.1070/QE2014v044n04ABEH015324
56. Ivanov D.S., Rethfeld B.C. The effect of pulse duration on the interplay of electron heat conduction and electron-photon interaction: photo-mechanical versus photo-thermal damage of metal targets. Applied Surface Science, 2009, vol. 255, no. 24, pp. 9724–9728. doi: 10.1016/j.apsusc.2009.04.131
57. Anders C., Bringa E.M., Urbassek H.M. Sputtering of a metal nanofoam by Au ions. Nuclear Instruments and Methods in Physics Research, Section B, 2015, vol. 342, pp. 234–239. doi: 10.1016/j.nimb.2014.10.005
58. Bringa E.M., Monk J.D., Caro A., Misra A., Zepeda-Ruiz L., Duchaineau M., Abraham F., Nastasi M., Picraux S.T., Wang Y.Q., Farkas D. Are nanoporous materials radiation resistant? Nano Letters, 2012, vol. 12, no. 7, pp. 3351–3880. doi: 10.1021/nl201383u
 



Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2024 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика