DOI: 10.17586/2226-1494-2015-15-6-1054-1061


I. V. Korsakov, M. V. Mukhina, V. G. Maslov, A. V. Baranov, A. V. Fedorov, Y. K. Gun’ko

Read the full article 
Article in Russian

For citation: Korsakov I.V., Mukhina M.V., Maslov V.G., Baranov A.V., Fedorov A.V., Gun’ko Yu.K. Сhiral recognition of cysteine molecules by chiral CdSe and CdS quantum dots. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2015, vol. 15, no. 6, pp. 1054–1061.

Here, we report the investigation of mechanism of chiral molecular recognition of cysteine biomolecules by chiral CdSe and CdS semiconductor nanocrystals. To observe chiral recognition process, we prepared enantioenriched ensembles of the nanocrystals capped with achiral ligand. The enantioenriched samples of intrinsically chiral CdSe quantum dots were prepared by separation of initial racemic mixture of the nanocrystals using chiral phase transfer from chloroform to water driven by L- and D-cysteine. Chiral molecules of cysteine and penicillamine were substituted for achiral molecules of dodecanethiol on the surfaces of CdSe and CdS samples, respectively, via reverse phase transfer from water to chloroform. We estimated an efficiency of the hetero- (d-L or l-D) and homocomplexes (l-L) formation by comparing the extents of corresponding complexing reactions. Using circular dichroism spectroscopy data we show an ability of nanocrystals enantiomers to discriminate between left-handed and right-handed enantiomers of biomolecules via preferential formation of heterocomplexes. Development of approaches for obtaining chiral nanocrystals via chiral phase transfer offers opportunities for investigation of molecular recognition at the nano/bio interfaces.

Keywords: quantum dots, CdSe, CdS, chirality, molecular recognition, enantioselectivity, circular dichroism, absorption

Acknowledgements. This work was supported by the Government of the Russian Federation (Grant 074-U01), and the Ministry of Education and Science of the Russian Federation (Grant No. 14.B25.31.0002). M.В.М. thanks the Ministry of Education and Science of the Russian Federation for partial support via the Scholarships of the President of the Russian Federation for Young Scientists and Graduate Students for 2015–2017.


1. Attard G.A., Ahmadi A., Feliu J., Rodes A., Herrero E., Blais S., Jerkiewicz G. Temperature effects in the enantiomeric electro-oxidation of d- and l-glucose on Pt{643}s. Journal of Physical Chemistry B, 1999, vol. 103, no. 9, pp. 1384–1385.
2. Horvath J.D., Gellman A.J. Enantiospecific desorption of r- and s-propylene oxide from a chiral Cu(643) surface. Journal of the American Chemical Society, 2001, vol. 123, no. 32, pp. 7953–7954. doi: 10.1021/ja015890c
3. Kühnle A., Linderoth T.R., Hammer B., Besenbacher F. Chiral recognition in dimerization of adsorbed cysteine observed by scanning tunnelling microscopy. Nature, 2002, vol. 415, no. 6874, pp. 891–893. doi: 10.1038/415891a
4. Kühnle A., Molina L., Linderoth T.R., Hammer B., Besenbacher F. Growth of unidirectional molecular rows of cysteine on a u (110)-(1x 2) driven by adsorbate-induced surface rearrangements. Physical Review Letters, 2004, vol. 93, no. 8, pp. 086101–1–086101–4. doi: 10.1103/PhysRevLett.93.086101
5. Greber T., Sljivancanin Z., Schillinger R., Wider J., Hammer B. Chiral recognition of organic molecules by atomic kinks on surfaces. Physical Review Letters, 2006, vol. 96, no. 5, art. 056103. doi: 10.1103/PhysRevLett.96.056103
6. Hegstrom R.A., Rein D.W., Sandars P.G.H. Calculation of the parity nonconserving energy difference between mirror-image molecules. Journal of Chemical Physics, 1980, vol. 73, no. 5, pp. 2329–2341.
7. Easson L.H., Stedman E. Studies on the relationship between chemical constitution and physiological action: molecular dissymmetry and physiological activity. Biochem. Journal, 1933, vol. 27, pp. 1257.
8. Booth T.D., Wahnon D., Wainer I.W. Is chiral recognition a three-point process? // Chirality. 1997. V. 9. N 2. P. 96–98. doi: 10.1002/(SICI)1520-636X(1997)9:2<96::AID-CHIR2>3.0.CO;2-E
9. Berthod A. Chiral recognition mechanisms. Analytical Chemistry, 2006, vol. 78, no. 7, pp. 2093–2099. doi: 10.1021/ac0693823
10. Ben-Moshe A., Govorov A.O., Markovich G. Enantioselective synthesis of intrinsically chiral mercury sulfide nanocrystals. Angewandte Chemie, 2013, vol. 125, no. 4, pp. 1275–1279. doi: 10.1002/anie.201207489
11. Elliott S.D., Moloney M.P., Gun’ko Y.K. Chiral shells and achiral cores in CdS quantum dots. Nano Letters, 2008, vol. 8, no. 8, pp. 2452–2457. doi: 10.1021/nl801453g
12. Moloney M.P., Gallagher S.A., Gun’ko Y.K. Chiral CdTe quantum dots. Materials Research Society Symposium Proceedings. Boston, USA, 2009, vol. 1241, pp. 13–26.
13. Gerard V.A., Freeley M., Defrancq E., Fedorov A.V., Gun'ko Y.K. Optical properties and in vitro biological studies of oligonucleotide-modified quantum dots. Journal of Nanomaterials, 2013, vol. 2013, art. 463951. doi: 10.1155/2013/463951
14. Gallagher S.A., Moloney M.P., Wojdyla M., Quinn S.J., Kelly J.M., Gun'ko Y.K. Synthesis and spectroscopic studies of chiral CdSe quantum dots. Journal of Materials Chemistry, 2010, vol. 20, no. 38, pp. 8350–8355. doi: 10.1039/c0jm01185a
15. Ben-Moshe A., Wolf S.G., Sadan M.B., Houben L., Fan Z., Govorov A.O., Markovich G. Enantioselective control of lattice and shape chirality in inorganic nanostructures using chiral biomolecules. Nature Communications, 2014, vol. 5, art. 4302. doi: 10.1038/ncomms5302
16. Moloney M.P., Govan J., Loudon A., Mukhina M., Gun'ko Y.K. Preparation of chiral quantum dots. Nature Protocols, 2015, vol. 10, no. 4, pp. 558–573. doi: 10.1038/nprot.2015.028
17. Nakashima T., Kobayashi Y., Kawai T. Optical activity and chiral memory of thiol-capped CdTe nanocrystals. Journal of the American Chemical Society, 2009, vol. 131, no. 30, pp. 10342–10343. doi: 10.1021/ja902800f
18. Tohgha U., Deol K.K., Porter A.G., Bartko S.G., Choi J.K., Leonard B.M., Varga K., Kubelka J., Muller G., Balaz M. Ligand induced circular dichroism and circularly polarized luminescence in CdSe quantum dots. ACS Nano, 2013, vol. 7, no. 12, pp. 11094–11102. doi: 10.1021/nn404832f
19. Tohgha U., Varga K., Balaz M. Achiral CdSe quantum dots exhibit optical activity in the visible region upon post-synthetic ligand exchange with d- or l-cysteine // Chemical Communications. 2013. V. 49. N 18. P. 1844–1846. doi: 10.1039/c3cc37987f
20. Mukhina M.V., Maslov V.G., Baranov A.V., Fedorov A.V., Gun'ko Y.K. Chiroptical properties of CdSe nanoplatelets. Proc. 6th Nanocon International Conference. Brno, Czech Republic, 2015.
21. Mukhina M.V., Maslov V.G., Korsakov I.V., Purcell-Milton F., Loudon A., Baranov A.V. Optically active ii-vi semiconductor nanocrystals via chiral phase transfer. Materials Research Society Symposium Proceedings, 2015, vol. 1793. doi: 10.1557/opl.2015.652
22. Mukhina M.V., Maslov V.G., Baranov A.V., Fedorov A.V., Orlova A.O., Purcell-Milton F., Gocan J., Gun'ko Y.K. Intrinsic chirality of CdSe/ZnS quantum dots and quantum rods. Nano Letters, 2015, vol. 15, no. 5, pp. 2844–2851. doi: 10.1021/nl504439w
23. Baimuratov A.S., Rukhlenko I.D., Gun’ko Y.K., Baranov A.V., Fedorov A.V. Dislocation-induced chirality of semiconductor nanocrystals. Nano Letters, 2015, vol. 15, no. 3, pp. 1710–1715. doi: 10.1021/nl504369x
24. Baimuratov A.S., Rukhlenko I.D., Noskov R.E., Ginzburg P, Gun'ko Y.K., Baranov A.V., Fedorov A.V. Giant optical activity of quantum dots, rods, and disks with screw dislocations. Scientific Reports, 2015, vol. 5, art. 14712. doi: 10.1038/srep14712
25. Yu Z., Maccagnano-Zacher S.E., Calcines J., Krauss T.D., Alldredge E.S., Silcox J. Small-angle rotation in individual colloidal CdSe quantum rods. ACS Nano, 2008, vol. 2, no. 6, pp. 1179–1188. doi: 10.1021/nn700323v
26. Meng F., Morin S.A., Forticaux A., Jin S. Screw dislocation driven growth of nanomaterials. Accounts of Chemical Research, 2013, vol. 46, no. 7, pp. 1616–1626. doi: 10.1021/ar400003q
27. Chen C.-C., Zhu C., White E.R., Chiu C.-Y., Scott M.C., Regan B.C., Marks L.D., Huang Y., Miao J. Three-dimensional imaging of dislocations in a nanoparticle at atomic resolution. Nature, 2013, vol. 496, no. 7443, pp. 74–77. doi: 10.1038/nature12009
28. Yang B., Yuan F., Liu Q., Huang N., Qui J., Staedler T., liu B., Jiang X.. Dislocation induced nanoparticle decoration on GaN nanowire. ACS Applied Materials and Interfaces, 2015, vol. 7, no. 4, pp. 2790–2796. doi: 10.1021/am5079896
29. Dobrovolsky A., Persson P.O.A., Sukrittanon S., Kuang Y., Tu C.W., Chen W.M., Buyanova I.A. Effects of polytypism on optical properties and band structure of individual Ga(N)P nanowires from correlative spatially-resolved structural and optical studies. Nano Letter, 2015, vol. 15, no. 6, pp. 4052–4058. doi: 10.1021/acs.nanolett.5b01054
30. Bullen C.R., Mulvaney P. Nucleation and growth kinetics of CdSe nanocrystals in octadecene. Nano Letters, 2004, vol. 4, no. 12, pp. 2303–2307. doi: 10.1021/nl0496724
31. Gaponik N., Talapin D.V., Rogach A.L., Eychmüller A., Weller H. Efficient phase transfer of luminescent thiol-capped nanocrystals: from water to nonpolar organic solvents. Nano Letters, 2002, vol. 2, no. 8, pp. 803−806. doi: 10.1021/nl025662w

Copyright 2001-2017 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.