doi: 10.17586/2226-1494-2016-16-1-1-21


TRENDS IN THE DEVELOPMENT OF DETONATION ENGINES FOR HIGH-SPEED AEROSPACE AIRCRAFTS AND THE PROBLEM OF TRIPLE CONFIGURATIONS OF SHOCK WAVES. Part I. Research of detonation engines

P. V. Bulat, P. V. Denissenko, K. N. Volkov


Read the full article  ';
Article in Russian

For citation: Bulat P.V., Denissenko P.V., Volkov K.N. Trends in the development of detonation engines for high-speed aerospace aircrafts and the problem of triple configurations of shock waves. Part I. Research of detonation engines. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2016, vol. 16, no. 1, pp. 1–21.

Abstract

We consider current problems of improving propulsion systems of highly supersonic air-space vehicles. In the first part, we review historic developments and list the landmark scientific papers. Classification of detonation engines is presented with detailed consideration of rotation detonation engines and continuous detonation engines. Experimental results on detonation, which are of particular importance for the design of detonation engines, are discussed. The second part of the paper provides an overview of the development in detonation theory, mathematical modelling, and numerical simulation. We focus on the interference of shock waves with formation of triple points, regular and irregular reflection of shock waves, existence of multiple solutions and the resulting appearance of hysteresis. The relevance and importance of triple shock wave configurations for the development of new types of air intakes and detonation jet engines is demonstrated.


Keywords: shock-wave, shock-wave structures, detonation engine, air intake.

References

1. Chernyshev S. TsAGI research capabilities to address aviation environmental impact issue. Proc. JAXA Aeronautics Symposium. Nagoya, 2012.
2. Skibin V.A., Solonin V.I., Palkin V.A. The Works of Leading Aircraft Engine Companies for the Development of Advanced Aircraft Engines (Analytical Review). Moscow, 2004, 424 p. (In Russian)
3. Sehra A.K., Whitlow W. Jr. Propulsion and power for 21st century aviation. Progress in Aerospace Sciences, 2004, vol. 40, no. 4–5, pp. 199–235. doi: 10.1016/j.paerosci.2004.06.003
4. Bonet J.T. Boeing ERA N+2 Advanced Vehicle Concept Results. 50th AIAA Aerospace Sciences Meeting. Nashville, 2012.
5. Falaleev S.V. Sovremennye Problemy Sozdaniya Dvigatelei Letatel'nykh Apparatov [Current problems in the creation of aircraft engines]. Samara, Samara State Aerospace University Publ., 2012, 106 p.
6. Byushgens G.S., Dmitriev V.G. Iz knigi O rabotakh TsAGI. 1970-2000 gody i perspektivy. Aeromekhanika i Teploobmen, 2001, no. 2, pp. 81–98.
7. Frolov S.M., Aksenov V.S., Dubrovskii A.V., Ivanov V.S., Shamshin I.O. Energy efficiency of a continuous-detonation combustion chamber. Combustion, Explosion, and Shock Waves, 2015, vol. 51, no. 2, pp. 232–245.
8. Tarasov A.I., Shchipakov V.A. Using pulse detonation technology to increase traction the efficacy engines. Aerospace Technic and Technology, 2011, no. 9(86), pp. 46–50.
9. Bulat P.V., Ilina E.E. The problem of creating detonation engine – current trends in aerospace engine manufacturing. Fundamental'nye Issledovaniya, 2013, no. 10–10, pp. 2143–2146. (In Russian)
10. Vasil`ev А.А. The principal aspects of application of detonation in propulsion systems. Journal of Combustion, 2013, vol. 2013, art. 945161. doi: 10.1155/2013/945161
11. Bulat P.V., Ilina E.E. The problem of creating detonation engine – current trends in aerospace engine manufacturing. Fundamental'nye Issledovaniya, 2013, no. 10–10, pp. 2140–2142. (In Russian)
12. Mitrofanov V.V. Teoriya Detonatsii [Theory of Detonation]. Novosibirsk, NSU Publ., 1982, 91 p.
13. Chernyi G.G. Asimptoticheskii zakon rasprostraneniya ploskoi detonatsionnoi volny [The asymptotic law of propagation of a plane detonation wave]. Doklady AN SSSR, 1967, vol. 172, no. 3, pp. 558–560.
14. Markov V.V. Chislennoe modelirovanie obrazovaniya mnogofrontovoi struktury detonatsionnoi volny [Numerical simulation of the multi-front structure formation of the detonation wave]. Doklady AN SSSR, 1981, vol. 258, no. 2, pp. 158–163.
15. Levin V.A., Chernyi G.G. Asymptotic laws of behavior of detonation waves. Journal of Applied Mathematics and Mechanics, 1967, vol. 31, no. 3, pp. 431–441.
16. Korobeinikov V.P., Levin V.A., Markov V.V., Chernyi G.G. Propagation of blast waves in a combustible gas. Astronautica Acta, 1972, vol. 17, no. 4–5, pp. 529–537.
17. Ting J.M., Bussing T.R.A., Hinkey J.B. Experimental characterization of the detonation properties of hydrocarbon fuels for the development of a pulse detonation engine. AIAA Paper, 1995, no. 95-3154.
18. Bulat P.V., Prodan N.V. Overview of projects detonation engines. Pulse ramjet engine. Fundamental'nye Issledovaniya, 2013, no. 10–8, pp. 1667–1671. (In Russian)
19. Bulat P.V., Prodan N.V. Trends in the development of projects detonation engines. Rotating detonation engines. Fundamental'nye Issledovaniya, 2013, no. 10–8, pp. 1672–1675. (In Russian)
20. Bulat P.V. About the detonation engine. American Journal of Applied Sciences, 2014, vol. 11, no. 8, pp. 1357–1364. doi: 10.3844/ajassp.2014.1357.1364
21. Wolanski P. Detonative propulsion. Proceedings of the Combustion Institute, 2013, vol. 34, no. 1, pp. 125–158. doi: 10.1016/j.proci.2012.10.005
22. Bulat P.V., Upyrev V.V., Denisenko P.V. Oblique shock wave reflection from the wall. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2015, vol. 15, no. 2, pp. 338–345. doi: 10.17586/2226-1494-2015-15-2-338-345
23. Bulat P.V., Denisenko P.V., Prodan N.V. Interference of counterpropagating shock waves. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2015, vol. 15, no. 2, pp. 346–355. doi: 10.17586/2226-1494-2015-15-2-346-355
24. Bulat P.V., Denissenko P.V., Prodan N.V., Upyrev V.V. Interference hysteresis of counterpropagating shock waves at a change in Mach number. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2015, vol. 15, no. 5, pp. 930–941. doi: 10.17586/2226-1494-2015-15-5-930-941
25. Dunlap R., Brehm R.L., Nicholls J.A. A preliminary study of the application of steady-state detonative combustion to a reaction engine. Jet Propulsion, 1958, vol. 28, no. 7, pp. 451–456.
26. Ivanov M.S., Kudrjavtsev A.N., Trotsjuk A.V., Fomin V.M. Method of Organization of Detonation Combustion Chamber of Supersonic Ramjet Engine. Patent RU2285143, 2006.
27. Gun’ko Ju.P. Supersonic Intake. Patent RU2343297, 2008.
28. Zel'dovich Ya.B. Ob energeticheskom ispol'zovanii detonatsionnogo sgoraniya. Zhurnal Tekhnicheskoi Fiziki, 1940, no. 1(17), pp. 1453–1461.
29. Bam-Zelikovich G.M. Raspad proizvol'nogo razryva v goryuchei smesi. Teoreticheskaya Gidromekhanika, 1949, no. 4, pp. 112–141.
30. Bam-Zelikovich G.M. O kolebaniyakh pri gorenii gaza v trubakh. Teoreticheskaya Gidromekhanika, 1952, no. 9, pp. 184–208.
31. Bykovskii F.A., Zhdan S.A. Nepreryvnaya Spinovaya Detonatsiya [Continuous Spin Detonation]. Novosibirsk, SO RAN Publ., 2013, 423 p.
32. Frolov S.M. Impul'snye Detonatsionnye Dvigateli [Pulse Detonation Engine]. Moscow, Torus Press, 2006, 592 p.
33. Zasukhin O.N., Bulat P.V., Prodan N.V. Osobennosti primeneniya modelei turbulentnosti pri raschete sverkhzvukovykh techenii v traktakh perspektivnykh vozdushno-reaktivnykh dvigatelei. Dvigatel', 2012, no. 1, pp. 22–25.
34. Nicholls J.A., Dabora E.K. Recent results on standing detonation waves. Proceedings of the Combustion Institute, 1961, vol. 8, no. 1, pp. 644–655. doi: 10.1016/S0082-0784(06)80556-4
35. Hishida M., Fujiwara T., Wolanski P. Fundamentals of rotating detonations. Shock Waves, 2009, vol. 19, no. 1, pp. 1–10. doi: 10.1007/s00193-008-0178-2
36. Bykovskii F.A., Zhdan S.A., Vedernikov E.F. Continuous spin detonations. Journal of Propulsion and Power, 2006, vol. 22, no. 6, pp. 1204–1216. doi: 10.2514/1.17656
37. Phylippov Yu.G., Dushin V.R., Nikitin V.F., Nerchenko V.A., Korolkova N.V., Guendugov V.M. Fluid mechanics of pulse detonation thrusters. Acta Astronautica, 2012, vol. 76, pp. 115–126. doi: 10.1016/j.actaastro.2012.02.007
38. Shao Y., Liu M., Wang J.-P. Continuous detonation engine and effects of different types of nozzle on its propulsion performance. Chinese Journal of Aeronautics, 2010, vol. 23, no. 6,pp. 647–652. doi: 10.1016/S1000-9361(09)60266-1
39. Dabora E.K., Broda J.C. Standing normal detonations and oblique detonations for propulsion. AIAA Paper, 1993, no. 93-2325.
40. Adamson T.C. Jr., Olsson G.R. Performance analysis of a rotating detonation wave rocket engine. Astronautica Acta, 1967, vol. 13, no. 4, pp. 405–415.
41. Bussing T., Hinkey J.B., Kaye L. Pulse detonation engine preliminary design considerations. AIAA Paper, 1994, no. 94-3220.
42. Roy G.D., Frolov S.M., Borisov A.A., Netzer D.W. Pulse detonation propulsion: challenges, current status, and future perspective. Progress in Energy and Combustion Science, 2004, vol. 30, no. 6, pp. 545–672. doi: 10.1016/j.pecs.2004.05.001
43. Westbrook С.К., Mizobuchi Y., Poinsot T.J., Smith P.J., Warnatz J. Computational combustion. Proceedings of the Combustion Institute, 2005, vol. 30, no. 1, pp. 125–157. doi: 10.1016/j.proci.2004.08.275
44. Hinkey J.B., Bussing T.R.A., Kaye L. Shock tube experiments for the development of a hydrogen-fuelled pulse detonation engine. AIAA Paper, 1995, no. 95-2578.
45. Eidelman S., Grossman W. Pulsed detonation engine: experimental and theoretical review. AIAA Paper, 1992, no. 92-3168.
46. Lu J., Zheng L., Wang Z., Peng C., Chen X. Thrust measurement method verification and analytical studies on a liquid-fueled pulse detonation engine. Chinese Journal of Aeronautics, 2014, vol. 27, no. 3, pp. 497–504. doi: 10.1016/j.cja.2014.04.001
47. Remeev N.Kh., Vlasenko V.V., Rakhimov R.A., Ivanov V.V. Chislennoe modelirovanie i eksperimental'noe issledovanie rabochego protsessa v detonatsionnoi kamere sgoraniya. Khimicheskaya Fizika, 2003, vol. 22, no. 8, pp. 45–56.
48. Wintenberger E., Shepherd J.E. Thermodynamic cycle analysis of propagating detonations. Journal of Propulsion and Power, 2006, vol. 22, no. 3, pp. 694–697. doi: 10.2514/1.12775
49. Tangirala V.E., Dean A.J., Tsuboi N., Hayashi A.K. Performance of a pulse detonation engine under subsonic and supersonic flight conditions. Proc. 45th AIAA Aerospace Sciences Meeting. Reno, USA, 2007, pp. 14887–14905.
50. Rao S. Effect of Friction on the Zel’dovich–von Neumann–Dooring to Chapman–Jouguet Transition. Master's thesis, University of Texas at Arlington, 59 p.
51. Pukhnachev V.V. Ob ustoichivosti detonatsii Chepmena-Zhuge. Doklady AN SSSR, 1963, vol. 149, no. 4, pp. 798–801.
52. Nichols J.A., Wilkmson H.R., Morrison R.B. Intermittent detonation as a trust-producing mechanism. Jet Propulsion, 1957, vol. 21, pp. 534–541.
53. Levin V.A., Smekhov G.D., Tarasov A.I., Khmelevskii A.N. Raschetnoe i eksperimental'noe issledovanie pul'siruyushchei detonatsii v modeli dvigatelya. Preprint IM MGU, 1998, no. 42–98.
54. Eidelman S., Yang X. Analysis of the pulse detonation engine efficiency. AIAA Paper, 1998, no. 98–3877, pp. 137–146.
55. Mitrofanov V.V., Zhdan S.A. Thrust performance of an ideal pulse detonation engine. Combustion, Explosion, and Shock Waves, 2004, vol. 40, no. 4, pp. 380–385. doi: 10.1023/B:CESW.0000033559.75292.8e
56. Kawane K., Shimada S., Kasahara J., Matsuo A. The influence of heat transfer and friction on the impulse of a detonation tube. Combustion and Flame, 2011, vol. 158, no. 10, pp. 2023–2036. doi: 10.1016/j.combustflame.2011.02.017
57. Schauer F.R., Miser C.L., Tucker K.C., Bradley R.P., Hoke J.L. Detonation initiation of hydrocarbon-air mixtures in a pulsed detonation engine. Proc. 43th AIAA Aerospace Sciences Meeting and Exhibit. Reno, USA, 2005, pp. 5271–5280.
58. Schauer F., Stutrud J., Bradley R. Detonation initiation studies and performance results for pulsed detonation engine applications. Proc. 39th AIAA Aerospace Sciences Meeting. Reno, USA, 2001, no. 2001–1129.
59. Knystautas R., Guirao C., Lee J.H., Sulmistras A. Measurements of cell size in hydrocarbon-air mixtures and predictions of critical tube diameter, critical initiation energy, and detonability limits. Progress in Astronautics and Aeronautics, 1984, vol. 94, pp. 23–37.
60. Helman D., Shreeve R.P., Eidelman S. Detonation pulse engine. AIAA Paper, 1986, art. 86-1683.
61. Endo T., Fujiwara T. A simplified analysis on a pulse detonation engine model. Transactions of Japan Society for Aeronautical and Space Sciences, 2002, vol. 44, no. 146, pp. 217–222.
62. Yageta J., Shimada S., Matsuoka K., Kasahara J., Matsuo A. Combustion wave propagation and detonation initiation in the vicinity of closed-tube end walls. Proceedings of the Combustion Institute, 2011, vol. 33, no. 2, pp. 2303–2310. doi: 10.1016/j.proci.2010.07.049
63. Zhukov V.P., Starikovskii A.Yu. Deflagration-to-detonation control by non-equilibrium gas discharges and its applications for pulsed detonation engine. Proc. 43th AIAA Aerospace Sciences Meeting and Exhibit. Reno, USA, 2005, pp. 4599–4604.
64. Levin V.A., Nechaev Yu.I., Tarasov A.I. A new approach to workflow organization of pulse detonation engines. Khimicheskaya Fizika, 2001, vol. 20, no. 6, pp. 90–98. (In Russian)
65. Larionov S.Yu., Nechaev Y.N., Mokhov A.A. Investigations and analysis of “cold” blowing for a thrust module of high-frequency knocking combustion pulsejet engine. Vestnik Moskovskogo Aviatsionnogo Instituta, 2007, vol. 14, no. 4, pp. 36–42.
66. Cambier J.-L., Adelman H., Menees G.P. Numerical simulations of an oblique detonation wave engine. Journal of Propulsion and Power, 1990, vol. 6, no. 3, pp. 315–323.
67. Choi J.-Y., Jeung I.-S., Yoon Y. Numerical study of scram accelerator starting characteristics. AIAA Journal, 1998, vol. 36, no. 6, pp. 1029–1038.
68. Aleksandrov V.G., Vedeshkin G.K., Kraiko A.N., Ogorodnikov D.A., Reent K.S., Skibin V.A., Chernyi G.G. Sverkhzvukovoi Pul'siruyushchii Detonatsionnyi Pryamotochnyi Vozdushno-Reaktivnyi Dvigatel' (SPDPD) i Sposob Funktsionirovaniya SPDPD. Patent RU 2157909.
69. Voitsekhovskii B.V., Mitrofanov V.V., Topchiyan M.E. Struktura Fronta Detonatsii v Gazah [The Structure of the Detonation Front in Gases]. Novosibirsk, SO AN USSR Publ., 1963, 167 p.
70. Voitsekhovskii B.V. Spinovaya statsionarnaya detonatsiya. PMTF, 1960, no. 3, pp. 157–164.
71. Davidenko D. Theoretical performance of rocket and turbojet engines operating in the continuous detonation mode. Proc. 4th European Conference for Aerospace Sciences, EUCASS. St. Petersburg, Russia, 2011.
72. Davidenko D.M., Gokalp I., Kudryavtsev A.N. Numerical study of the continuous detonation wave rocket engine. Proc. 15th AIAA International Space Planes and HyperSonic Systems and Technologies Conference. Dayton, 2008, art. 2008–2680.
73. Voitsekhovskii B.V. Statsionarnaya detonatsiya. Doklady AN SSSR, 1959, vol. 129, no. 6, pp. 1251–1256.
74. Lee S.-H., Jo D.R., Choi J.-Y. Effect of curvature on the detonation wave propagation characteristics in annular channels. Proc. 46th AIAA Aerospace Sciences Meeting and Exhibit. Reno, USA, 2008, art. 2008–0988.
75. Pan Z.H., Fan B.C., Zhang X.D., Gui M.Y., Dong G. Wavelet pattern and self-sustained mechanism of gaseous detonation rotating in a coaxial cylinder. Combustion and Flame, 2011, vol. 158, no. 11, pp. 2220–2228. doi: 10.1016/j.combustflame.2011.03.016
76. Nakayama H., Moriya T., Kasahara J., Matsuo A., Sasamoto Y., Funaki I. Stable detonation wave propagation in rectangular-cross-section curved channels. Combustion and Flame, 2012, vol. 159, no. 2, pp. 859–869. doi: 10.1016/j.combustflame.2011.07.022
77. Kindracki J., Wolanski P., Gut Z. Experimental research on the rotating detonation in gaseous fuels–oxygen mixtures. Shock Waves, 2011, vol. 21, no. 2, pp. 75–84. doi: 10.1007/s00193-011-0298-y
78. Bykovskii F.A., Zhdan S.A., Vedernikov E.F. Continuous spin detonation of a hydrogen-air mixture with addition of air into the products and the mixing region. Combustion, Explosion, and Shock Waves, 2010, vol. 46, no. 1, pp. 52–59. doi: 10.1007/s10573-010-0009-5
79. Bykovskii F.A., Zhdan S.A., Vedernikov E.F. Continuous spin detonation of fuel-air mixtures. Combustion, Explosion, and Shock Waves, 2006, vol. 42, no. 4, pp. 463–471. doi: 10.1007/s10573-006-0076-9
80. Bykovskii F.A., Zhdan S.A., Vedernikov E.F. Reactive thrust generated by continuous detonation in the air ejection mode. Combustion, Explosion, and Shock Waves, 2013, vol. 49, no. 3, pp. 188–195. doi: 10.1134/S0010508213020093
81. Falempin F., Daniau E., Getin N., Bykovskii F.A., Zhdan S. Toward a continuous detonation wave rocket engine demonstrator. Proc. 14th AIAA/AHI International Space Planes and Hypersonic. Canderra, Australia, 2006, pp. 501–511.
82. Hishida M., Fujiwara T., Wolanski P. Fundamentals of rotating detonations. Shock Waves, 2009, vol. 19, no. 1, pp. 1–10. doi: 10.1007/s00193-008-0178-2
83. Schwer D.A., Kailasanath K. Fluid dynamics of rotating detonation engines with hydrogen and hydrocarbon fuels. Proceedings of the Combustion Institute, 2013, vol. 34, no. 2, pp. 1991–1998. doi: 10.1016/j.proci.2012.05.046
84. Schwer D.A., Kailasanath K. Numerical investigation of the physics of rotating-detonation-engines. Proceedings of the Combustion Institute, 2011, vol. 33, no. 2, pp. 2195–2202. doi: 10.1016/j.proci.2010.07.050
85. Schwer D.A., Kailasanath K. Numerical investigation of rotating detonation engines. Proc. 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Nashville, 2010, art. AIAA 2010-6880.
86. Shao Y.-T., Liu M., Wang J.-P. Numerical investigation of rotating detonation engine propulsive performance. Combustion Science and Technology, 2010, vol. 182, no. 11–12, pp. 1586–1597. doi: 10.1080/00102202.2010.497316
87. Tsuboi N., Eto K., Hayashi A.K. Detailed structure of spinning detonation in a circular tube. Combustion and Flame, 2007, vol. 149, no. 1–2, pp. 144–161. doi: 10.1016/j.combustflame.2006.12.004
88. Uemura Y., Hayashi A.K., Asahara M., Tsuboi N., Yamada E. Transverse wave generation mechanism in rotating detonation. Proceedings of the Combustion Institute, 2013, vol. 34, no. 2, pp. 1981–1989. doi: 10.1016/j.proci.2012.06.184
89. Zhou R., Wang J.-P. Numerical investigation of flow particle paths and thermodynamic performance of continuously rotating detonation engines. Combustion and Flame, 2012, vol. 159, no. 12, pp. 3632–3645. doi: 10.1016/j.combustflame.2012.07.007
90. Zhou R., Wang J.-P. Numerical investigation of shock wave reflections near the head ends of rotating detonation engines. Shock Waves, 2013, vol. 23, no. 5, pp. 461–472. doi: 10.1007/s00193-013-0440-0
91. Zhou R., Wang J.-P., Wu D. Three-dimensional of continuously rotating detonation engines. Proc. 7th Int. Conf. on Computational Fluid Dynamics, ICCFD7. Big Island, Hawaii, 2012, no. ICCFD7-4004.
 



Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2024 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика