DOI: 10.17586/2226-1494-2016-16-1-85-89


E. S. Bochkareva, A. I. Sidorov

Read the full article 
Article in Russian

For citation: Bochkareva E.S., Sidorov A.I. Simulation of sensing element of temperature sensor based on silicate glass with sodium nano-particles. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2016, vol. 16, no. 1, pp. 85–89.


Computational simulation methods were used to show that silicate glasses with sodium nanoparticles, which possess plasmon resonance at 405 nm wavelength, can be used as sensing elements in temperature sensors. The modeling was performed in a dipole quasistatic approximation taking into account the dispersion of sodium optical constants in solid and liquid states, and also the temperature dependence of sodium material density in a liquid phase. It was shown that for the temperature less than 373 K the glasses with sodium nanoparticles can be used for creation of temperature sensors of emergency situations with the threshold switching during the transition of sodium from solid to liquid state. The temperature measurement at higher temperatures can be performed either on the spectral shift of the plasmon absorption band, or on the change of its amplitude. The calculations have shown that the temperature sensitivity of spectral position of the plasmon absorption band of sodium nanoparticles in glass is 0.017 nm/K for the temperature region equal to 373-973K; and the temperature sensitivity of the plasmon absorption band amplitude is 0.3 %/K.

Keywords: modeling of thermal processes in glasses with nanoparticles, temperature sensor, sodium nanoparticle, plasmon resonance in nanoparticles

Acknowledgements. This work was financially supported by the Ministry of Education and Science of the Russian Federation during the scientific-research work in the frame of the project part of the Government task in the scientific work area according the task # 11.1227.2014/K.


1. Fiber Optic Sensors: An Introduction for Engineers and Scientists. Ed. E. Udd. NY, John Wiley & Sons, 2011, 512 p. doi: 10.1002/9781118014103
2. Agafonova D.S., Kolobkova E.V., Sidorov A.I. Temperature dependence of the luminescence intensity in optical fibers of oxyfluoride glass with CdS and CdSxSe1-x quantum dots. Technical Physics Letters, 2013, vol. 39, no. 14, pp. 629–631. doi: 10.1134/S1063785013070158
3. Nikonorov N.V., Sidorov A.I., Tsekhomsky V.A., Nashchekin A.V., Usov O.A., Podsvirov O.A., Poplevkin S.V. Electron-beam modification of the near-surface layers of photosensitive glasses. Technical Physics Letters, 2009, vol. 35, no. 4, pp. 309–311. doi: 10.1134/S1063785009040063
4. Vostokov A.V., Ignat'ev A.I., Nikonorov N.V., Podsvirov O.A., Sidorov A.I., Nashchekin A.V., Sokolov R.V., Usov O.A., Tsekhomskii V.A. Effect of electron irradiation on the formation of silver nanoclusters in photothermorefractive glasses. Technical Physics Letters, 2009, vol. 35, no. 9, pp. 812–814. doi: 10.1134/S1063785009090089
5. Usov O.A., Sidorov A.I., Nashchekin A.V., Podsvirov O.A., Kurbatova N.V., Tsekhomsky V.A., Vostokov A.V. SPR of Ag nanoparticles in a photothermochromic glasses. Proc. SPIE, 2009, vol. 7394, pp. 73942J-1-6. doi: 10.1117/12.825988
6. Podsvirov O.A., Ignatiev A.I., Nashchekin A.V., Nikonorov N.V., Sidorov A.I., Tsekhomsky V.A., Usov O.A., Vostokov A.V. Modification of Ag containing photo-thermorefractive glasses induced by electron-beam irradiation. Nuclear Instruments and Methods in Physics Research Section B, 2010, vol. 268, no. 19, pp. 3103–3106. doi: 10.1016/j.nimb.2010.05.061
7. Podsvirov O.A., Sidorov A.I., Tsekhomskii V.A., Vostokov A.V. Formation of copper nanocrystals in photochromic glasses under electron irradiation and heat treatment. Physics of Solid State, 2010, vol. 52, no. 9, pp. 1906–1909. doi: 10.1134/S1063783410090192
8. Ignat'ev A.I., Nashchekin A.V., Nevedomskii V.M., Podsvirov O.A., Sidorov A.I., Solov'ev A.P., Usov O.A. Formation of silver nanoparticles in photothermorefractive glasses during electron irradiation. Technical Physics, 2011, vol. 56, no. 5, pp. 662–667. doi: 10.1134/S1063784211050148
9. Bochkareva E.S., Nikonorov N.V., Podsvirov O.A., Prosnikov M.A., Sidorov A.I. The formation of sodium nanoparticles in alkali-silicate glass under the action of the electron beam and thermal treatments. Plasmonics, 2016, vol. 11, no. 1. doi: 10.1007/s11468-015-0046-8)
10. Klimov V.V. Nanoplazmonika [Nanoplasmonics]. Moscow, Fizmatlit Publ., 2009, 480 p.
11. Bohren C.F., Huffman D.R. Absorption and Scattering of Light by Small Particles. NY, John Wiley & Sons, 1983, 570 p.
12. Kriebig U., Vollmer M. Optical Properties of Metal Clusters. Berlin, Springer-Verlag, 1995, 535 p. doi: 10.1007/978-3-662-09109-8
13. Inagaki T., Arakawa E.T., Birkhoff R.D., Williams M.W. Optical properties of liquid Na between 0.6 and 3.8 eV. Physical Review B, 1976, vol. 13, no. 12, pp. 5610–5612. doi: 10.1103/PhysRevB.13.5610
14. Zolotarev V.M., Morozov V.N., Smirnova E.V. Opticheskie Postoyannye Prirodnykh i Tekhnicheskikh Sred [The Optical Constants of Natural and Technical Environments]. Leningrad, Khimiya Publ., 1984, 216 p.
15. Zhang Z.Y, Grattan K.T.V., Palmer A.W., Meggitt B.T., Sun T. Fluorescence decay-time characteristics of erbium-doped optical fiber at elevated temperatures. Review of Scientific Instruments, 1997, vol. 68, no. 7, pp. 2764–2766. doi: 10.1063/1.1148192
16. Zhang Z.Y., Grattan T.V., Palmer A.W., Meggitt B.T. Potential for temperature sensor applications of highly neodymium-doped crystals and fiber at up to approximetly 1000˚ C. Review of Scientific Instruments, 1997, vol. 68, no. 7, pp. 2759–2763.

Copyright 2001-2017 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.