doi: 10.17586/2226-1494-2016-16-3-402-408


ANALOG-TO-DIGITAL CONVERSION OF SIGNALS WITH ANGULAR MANIPULATION FOR SOFTWARE DEFINED RADIO SYSTEMS

A. Y. Tsvetkov, A. G. Prygunov, N. D. Anikeichik, I. P. Rybalko, N. A. Osipov


Read the full article  ';
Article in Russian

For citation: Tsvetkov A.Yu., Prygunov A.G., Anikeichik N.D., Rybalko I.P., Osipov N.A. Analog-to-digital conversion of signals with angular manipulation for software defined radio systems. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2016, vol. 16, no. 3, pp. 402–408. doi: 10.17586/2226-1494-2016-16-3-402-408

Abstract

The paper deals with the search of ways for speeding up and accuracy increase of conversion of modern analog-to-digital converters. The main shortcomings interfering a solution of this task including the field of optoelectronic analog-to-digital converters are provided. The proposed solution gives the chance to increase high-speed performance of analog-to-digital converters on the basis of holographic interferometry principles without reducing their accuracy of conversion. The optical scheme of interferential and holographic method of analog-to-digital conversion and results of its mathematical modeling are provided. Some recommendations about hardware implementation of this analog data digitizer are formulated. The physical principles and approaches to a choice of the converter structural elements are explained. An example of forming the functional scheme of a decoder for a luminous flux intensity in terms of registration of analog-to-digital converter is reviewed. The practical importance of the provided method consists in possibility of creation of analog-to-digital converters with high-speed performance about 600 MHz and with an accuracy of conversion up to 12 bits.


Keywords: analog-to-digital conversion, software defined radio system, holographic interference, coder

Acknowledgements. The authors are grateful for close attention and comments identified during discussions of materials with representatives of the scientific school from now-defunct Rostov Military Institute of Strategic Missile Troops named after I. M. Nedelin: Doctor of technical sciences, Professor D. D. Gabriel'yan and Doctor of technical sciences, Professor D. A. Bezuglov.

References

1. Galkin V.A. Osnovy Programmno-Konfiguriruemogo Radio [Basics of Software-Configurable Radio]. Moscow, Goryachaya Liniya-Telekom, 2013, 372 p.
2. Galkin V.A. Tsifrovaya Mobil'naya Svyaz' [Digital Mobile Communication]. 2nd ed. Moscow, Goryachaya Liniya-Telekom, 2012, 592 p.
3. Arslan Н. Cognitive Radio, Software Defined Radio, and Adaptive Wireless Systems. NY, Springer, 2007, 470 p. doi: 10.1007/978-1-4020-5542-3
4. Bezuglov D.A., Shvidchenko S.A., Kuzin A.P., Rybalko I.P. Analysis of study results of error-correcting coding parameters in space communication systems. Proc. XI Int. Forum on Innovations, Ecology and Resource-Saving Technologies. Divnomorskoe, Russian Federation, 2014, pp. 248–255.
5. Reed J.H. Software Radio: A Modern Approach to Radio Engineering. Prentice Hall, 2002, 592 p.
6. Kester W. ADC Architecture II: Successive Approximation ADCs. Application Note MT-021, 2008. Available at: http://www.analog.com/media/en/training-seminars/tutorials/MT-021.pdf (accessed 19.02.2016).
7. Kester W. ADC Architecture III: Sigma-Delta ADC Basics. Application Note MT-022, 2008. Available at: http://www.analog.com/media/en/training-seminars/tutorials/MT-022.pdf (accessed 19.02.2016).
8. Fundamentals of Sampling Data Systems. Application Note AN-282. Available at: http://www.analog.com/media/en/technical-documentation/application-notes/60452436005220859872700115159829353257206974259641368301086579520703792632610264805090AN282.pdf (accessed 19.02.2016).
9. Smart Selection of ADC/DAC Enables Better Design of Software-Defined Radio. Available at: http://www.ti.com/lit/an/slaa407/slaa407.pdf (accessed 18.02.2016).
10. Rufitskii M.V., Zolotov A.N. Principle of construction fast optoelectronic digital-to-analog converters. Izvestiya Instituta Inzhenernoy Phiziki, vol. 2, no. 28, pp. 66–69. (In Russian)
11. Zolotov A.N., Rufitskii M.V. Simulation of high-speed optoelectronic ADCs. Integral, 2012, no. 5, pp. 10–12.
12. Sokolov S.V., Bugayan I.R. Skhemotekhnika Opticheskikh Komp'yuterov [Circuit Design of Optical Computers]. Rostov-na-Donu, RGEU RINKh Publ., 2007, 218 p.
13. Semenov A.S., Smirnov V.L., Shmal'ko A.V. Integral'naya Optika dlya Sistem Peredachi i Obrabotki Informatsii [Integrated optics for the transmission and processing systems]. Moscow, Radio i Svyaz' Publ., 1990, 224 p.
14. Dokhikyan R.G., Evtikheev N.N. The use of optoelectronic techniques for creating fast analog-to-digital signal converters. Zarubezhnaya Radioelektronika, 1983, no. 9, pp. 100–110. (In Russian)
15. Tsvetkov A.Yu. Theoretical justification for the possible existence of an interference-holographic method of analog-to-digital conversion for PSK signals. Proc. IX Int. Conf on Applied Optics 2010. St. Petersburg, 2010, pp. 18–23. (In Russian)
16. Tsvetkov A.Yu. Holographic method of analog-to-digital conversion on the basis of the wave fronts interference analysis. Nauchnaya Mysl' Kavkaza. Prilozhenie, 2004, no. 13, pp. 14–18. (In Russian)
17. Miler M. Holografie (Teoreticke a Experimentalni Zaklady a Jeji Pouziti). Praha, 1974.



Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2024 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика