DOI: 10.17586/2226-1494-2016-16-4-716-724


E. V. Popova, O. V. Shavykin , I. M. Neelov, F. Leermakers

Read the full article 
Article in Russian

For citation: Popova E.V., Shavykin O.V., Neelov I.M., Leemakers F. Molecular dynamics simulation of lysine dendrimer and semax peptides interaction. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2016, vol. 16, no. 4, pp. 716–724. doi: 10.17586/2226-1494-2016-16-4-716-724


The paper deals with the possibility of complex formation of therapeutic Semax peptides with lysine dendrimer by molecular modeling methods. Dendrimers are often used for delivery of drugs and biological molecules (e.g., DNA, peptides and polysaccharides). Since lysine dendrimers are less toxic than conventional synthetic dendrimers (e.g., polyamidoamine (PAMAM) dendrimer), we chose them and studied two systems containing dendrimer and the different number of Semax peptides. The study was carried out by molecular dynamics method. It was obtained that the stable complexes were formed in both cases. The equilibrium structures of these complexes were investigated. These complexes can be used in the future in therapy of various diseases as Semax peptides have significant antioxidant, antihypoxic and neuroprotecting action.

Keywords: lysine dendrimers, Semax peptides, computer simulation, molecular dynamics method

Acknowledgements. The research was prepared with the use of supercomputer system resources of Lomonosov Moscow State University. This work was supported by grants of the Russian Federation Government 074-U01 and RFBR 16-03-00775 and 15-33-20693mol_a_ved.


Buhleier E, Wehner W, Vögtle F. “Cascade”- and “nonskid-chain-like” synthesis of molecular cavity topologies. Synthesis, 1978, vol. 9, no. 2, pp. 155–158.
2. Abbasi E., Aval S.F., Akbarzadeh A., Milani M., Nasrabadi H.T., Joo S.W., Hanifehpour Y., Nejati-Koshki K., Pashaei-Asl R. Dendrimers: synthesis, applications, and properties. Nanoscale Research Letters, 2014, vol. 9, no. 1, p. 247. doi: 10.1186/1556-276X-9-247
3. Alder B.J., Wainwright T.E. Molecular dynamics by electronic computers. Proc. International Symposium on Transport Processes in Statistical Mechanics. Brussel, 1956, pp. 97–131.
4. Verlet L. Computer “experiments” on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Physical Review, 1967, vol. 159, no. 1, pp. 98–103. doi: 10.1103/PhysRev.159.98
5. Stillinger F.H., Rahman A. Molecular dynamics study of temperature effects on water structure and kinetics. The Journal of Chemical Physics, 1972, vol. 57, no. 3, pp. 1281–1292.
6. Balabaev N.K., Grivtsov A.G., Shnol' E.E. Chislennoe Modelirovanie Dvizheniya Molekul: Preprint IPM [Numerical Modeling of Molecular Motion: Preprint IPM]. Moscow, 1972, 38 p.
7. Neelov I.M. Uravneniya Dvizheniya i Vremena Relaksatsii Tsepnoi Makromolekuly. Diplomnaya Rabota [Equations of Motion and Relaxation Times of the Chain Macromolecule. Graduate Work]. Leningrad, LSU Publ., 1974.
8. Ryckaert J.P., Ciccotti G, Berendsen H.J.C Numerical integration of Cartesian equations of motion of a systems with constraints-molecular dynamics of n-alkanes. Journal of Computational Physics, 1977, vol. 23, no. 3, pp. 327–341. doi: 10.1016/0021-9991(77)90098-5
9. Hess B., Kutzner C., Van Der Spoel D., Lindahl E. GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. Journal of Chemical Theory and Computation, 2008, vol. 4, no. 3, pp. 435–447. doi: 10.1021/ct700301q
10. Hornak V., Abel R., Okur A., Strockbine D., Roitberg A., Simmerling C. Comparison of multiple amber force fields and development of improved protein backbone parameters. Proteins: Structure Function and Genetics, 2006, vol. 65, no. 3, pp. 712–725. doi: 10.1002/prot.21123
11. Neelov I.M., Markelov D.A., Falkovich S.G., Ilyash M.Yu., Okrugin B.M., Darinskii A.A. Mathematical simulation of lysine dendrimers: Temperature dependences. Polymer Science - Series C, 2013, vol. 55, no. 1, pp. 154–161. doi: 10.1134/S1811238213050032
12. Falkovich S., Markelov D., Neelov I., Darinskii A. Are structural properties of dendrimers sensitive to the symmetry of branching? Computer simulation of lysine dendrimers. Journal of Chemical Physics, 2013, vol. 139, no. 7, art. 064903. doi: 10.1063/1.4817337
13. Neelov I., Falkovich S., Markelov D., Paci E., Darinskii A., Tenhu H. Molecular dynamics of lysine dendrimers. Computer simulation and NMR. In: Dendrimers in Biomedical Applications. London, Royal Society of Chemistry, 2013, pp. 99–114. doi: 10.1039/9781849737296-00099
14. Neelov I.M., Janaszewska A., Klajnert B., Bryszewska M., Makova N., Hicks D., Pearson H., Vlasov G.P., Ilyash M.Yu., Vasilev D.S., Dubrovskaya N.M., Tumanova N.L., Zhuravin I.A., Turner A.J., Nalivaeva N.N. Molecular properties of lysine dendrimers and their interactions with -peptides and neuronal cells. Current Medical Chemistry, 2013, vol. 20, no. 1, pp. 134–143. doi: 10.2174/09298673130113
15. Neelov I.M., Mistonova A.A., Khvatov A.Y., Bezrodny V.V. Molecular dynamic simulation of peptide polyelectrolytes. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2014, no. 4. pp. 169–175. (In Russian).
16. Markelov D.A, Falkovich S.G., Neelov I.M., Ilyash M.Yu, .Matveev V.V, Lahderanta E., Ingman P. Darinskii A.A. Molecular dynamics simulation of spin-lattice NMR relaxation in poly-L-lysine dendrimers. Manifestation of the semiflexibility effect. Physical Chemistry and Chemical Physics, 2015, vol. 17, pp. 3214–3226. doi: 10.1039/c4cp04825c
17. Voevodin Vl.V., Zhumatii S.A., Sobolev S.I., Antonov A.S., Bryzgalov P.A., Nikitenko D.A., Stefanov K.S., Voevodin Vad.V. Praktika superkomp'yutera "Lomonosov". Otkrytye Sistemy. SUBD, 2012, no. 7, pp. 36–39.

Copyright 2001-2018 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.