DOI: 10.17586/2226-1494-2016-16-5-831-838


SIMULATION MODEL FOR DESIGN SUPPORT OF INFOCOMM REDUNDANT SYSTEMS

V. A. Bogatyrev, N. S. Karmanovskiy, N. A. Poptsova, S. A. Parshutina, D. A. Voronina, S. V. Bogatyryev


Read the full article 
Article in Russian

For citation: Bogatyrev V.A., Karmanovsky N.S., Poptcova N.A., Parshutin S.A., Voroninа D.A., Bogatyrev S.V. Simulation model for design support of infocomm redundant systems. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2016, vol. 16, no. 5, pp. 831–838. doi: 10.17586/2226-1494-2016-16-5-831-838

Abstract

Subject of Research. The paper deals with the effectiveness of multipath transfer of request copies through the network and their redundant service without the use of laborious analytical modeling. The model and support tools for the design of highly reliable distributed systems based on simulation modeling have been created. Method.  The effectiveness of many variants of service organization and delivery through the network to the query servers is formed and analyzed.  Options for providing redundant service and delivery via the network to the servers of request copies are also considered. The choice of variants for the distribution and service of requests is carried out taking into account the criticality of queries to the time of their stay in the system. The request is considered successful if at least one of its copies is accurately delivered to the working server, ready to service the request received through a network, if it is fulfilled in the set time. Efficiency analysis of the redundant transmission and service of requests is based on the model built in AnyLogic 7 simulation environment. Main Results. Simulation experiments based on the proposed models have shown the effectiveness of redundant transmission of copies of queries (packets) to the servers in the cluster through multiple paths with redundant service of request copies by a group of servers in the cluster. It is shown that this solution allows increasing the probability of exact execution of at least one copy of the request within the required time. We have carried out efficiency evaluation of destruction of outdated request copies in the queues of network nodes and the cluster. We have analyzed options for network implementation of multipath transfer of request copies to the servers in the cluster over disjoint paths, possibly different according to the number of their constituent nodes. Practical Relevance. The proposed simulation models can be used when selecting the optimal design solutions for the redundant transmission and maintenance of requests time-critical for stay in information and communication system.


Keywords: simulation, reliability, redundancy, queuing systems, request distribution, multipath transfer

Acknowledgements. The work is carried out within the framework of scientific research with master's students and postgraduates of the Department of computing.

References

1. Aranovskiy S.V., Aleksandrova S.A., Lovlin S.U. Identification method for the electromechanical system with the variable friction Aliev T.I. The synthesis of service discipline in systems with limits. Communications in Computer and Information Science, 2016, vol. 601, pp. 151–156. doi: 10.1007/978-3-319-30843-2_16
2. Aliev T.I., Rebezova M.I., Russ A.A. Statistical methods for monitoring travel agencies. Automatic Control and Computer Sciences, 2015, vol. 49, no. 6, pp. 321–327. doi: 10.3103/S0146411615060024
3. Bogatyrev V.A., Bogatyrev S.V., Bogatyrev A.V. Functional reliability of computing systems with redistribution of inquiries. Izv. vuzov. Priborostroenie, 2012, vol. 55, no. 10, pp. 53–56. (In Russian)
4. Aleksanin S.A., Zharinov I.O., Korobeynikov A.G., Perezyabov O.A., Zharinov O.O. Evaluation of chromaticity coordinate shifts for visually perceived image in terms of exposure to external illuminance. ARPN Journal of Engineering and Applied Sciences, 2015, vol. 10, no. 17, pp. 7494–7501.
5. Gatchin Yu.A., Zharinov I.O., Korobeynikov A.G. Mathematical estimation models of information security system infrastructure at the enterprise. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2012, no. 2 (78), pp. 92–95. (In Russian)
6. Bogatyrev V.A. Reliability estimation and optimal redundancy in computer cluster systems. Instruments and Systems: Monitoring, Control, and Diagnostics, 2006, no. 10, pp. 18–21.
7. Verzun N.A., Kolbanev M.O., Omelyan A.V. Controlled multiple access in wireless network of smart things. Omsk Scientific Bulletin, 2016, no. 4, pp. 147–151.
8. Bogatyrev V.A. Otkazoustoichivost' i sokhranenie effektivnosti funktsionirovaniya mnogomagistral'nykh raspredelennykh vychislitel'nykh system [Resiliency and preserve the functioning of mainline distributed computing systems]. Informacionnye Tehnologii, 1999, no. 9, pp. 44–48.
9. Bogatyrev V.A. Kombinatornyi metod otsenki otkazoustoichivosti mnogomagistral'nogo kanala. Methods of Quality Management, 2000, no. 4, pp. 30–35.
10. Bogatyrev V.A., Parshutina S.A. Multipath fault-tolerant routing models for distributing queries through the network. Herald of Computer and Information Technologies, 2015, no. 12, pp. 23–28.
11. Bogatyrev V.A., Parshutina S.A. Redundant distribution of requests through the network by transferring them over multiple paths. Communications in Computer and Information Science, 2016, vol. 601, pp. 199–207. doi: 10.1007/978-3-319-30843-2_21
12. Bogatyrеv V.A. Exchange of duplicated computing complexes in fault tolerant systems. Automatic Control and Computer Sciences, 2011, vol. 46, no. 5, pp. 268–276. doi: 10.3103/S014641161105004X
13. Bogatyrev V.A., Bogatyrev S.V., Bogatyrev A.V. Clusters optimization with the limited availability of clusters groups. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2011, no. 1 (71), pp. 63–67.
14. Bogatyrev V.A. Mul'tiprotsessornye sistemy s dinamicheskim pereraspredeleniem zaprosov cherez obshchuyu magistral' [Multiprocessor systems with dynamic reallocation requests through a common backbone]. Izv. vuzov SSSR. Priborostroenie, 1985, no. 3, pp. 33–38.
15. Bogatyrev V.A. K raspredeleniyu funktsional'nykh resursov v otkazoustoichivykh mnogomashinnykh vychislitel'nykh sistemakh [The distribution of functional resources in the fault-tolerant multicomputer systems]. Instruments and Systems: Monitoring, Control, and Diagnostics, 2001, no. 12, pp. 1–5.
16. Bogatyrev V.A. Nadezhnost' variantov razmeshcheniya funktsional'nykh resursov v odnorodnykh vychislitel'n. Engineering Simulation, 1997, no. 3, pp. 21–29.
17. Dudin A.N., Sun' B. A multiserver MAP/PH/N system with controlled broadcasting by unreliable servers. Automatic Control and Computer Sciences, 2009, vol. 43, no. 5, pp. 247–256. doi: 10.3103/S0146411609050046
18. Bogatyrev V.A., Bogatyrev A.V. Functional reliability of a real-time redundant computational process in cluster architecture systems. Automatic Control and Computer Sciences, 2015, vol. 49, no. 1, pp. 46–56. doi: 10.3103/S0146411615010022
19. Bogatyrev V.A., Bogatyrev A.V. The model of redundant service requests real-time in a computer cluster. Informacionnye Tehnologii, 2016, vol. 22, no. 5, pp. 348–355.
20. Bogatyrev V.A., Bogatyrev A.V. The reliability of the cluster real-time systems with fragmentation and redundant service requests. Informacionnye Tehnologii, 2016, vol. 22, no. 6, pp. 409–416.
21. Bogatyrev V.A., Bogatyrev A.V. Optimization of redundant routing requests in a clustered real-time systems. Informacionnye Tehnologii, 2015, vol. 21, no. 7, pp. 495–502. (In Russian)
22. Bogatyrev V.A., Bogatyrev S.V., Golubev I.Yu. Optimization and the process of task distribution between computer system clusters. Automatic Control and Computer Sciences, 2012, vol. 46, no. 3, pp. 103–111. doi: 10.3103/S0146411612030029
23. Bogatyrev V.A., Bogatyrev A.V., Golubev I.Yu., Bogatyrev S.V. Queries distribution optimization between clusters of fault-tolerant computing system. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2013, no. 3(85), pp. 77–82.

Copyright 2001-2017 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика