doi: : 10.17586/2226-1494-2017-17-5-761-766


BRAGG GRATINGS MULTIPUSLE INSCRIPTION EFFICIENCY DEPENDENCE ON ANGULAR POSITION OF ELLIPTICAL STRESS CLADDING IN BIREFRINGENT OPTICAL FIBERS

S. V. Arkhipov, V. E. Strigalev, S. V. Varzhel, N. E. Kikilich


Read the full article  ';
Article in Russian

For citation: Arkhipov S.V., Strigalev V.E., Varzhel S.V., Kikilich N.E. Bragg gratings multipusle inscription efficiency dependence on angular position of elliptical stress cladding in birefringent optical fibers.Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2017, vol. 17, no. 5, pp. 761–766 (in Russian). doi: 10.17586/2226-1494-2017-17-5-761-766

Abstract

 Subject of Research.The paper deals with mutlipulse inscription comparative results of the type IBragg gratings in the birefringent optical fiber with elliptical stress cladding and increased GeO2 concentration at different birefringence axes positions. Method. The gratings were inscribed by the phase mask method. The excimer laser Coherent COMPexPro 102F, working with the gas mixture KrF (248 nm), was used as the radiation source. The phase mask Ibsen Photonics with a period of1065.3 nm was used. Main Results.The results have shown that the multipusle inscription is more effective and has better dynamics when the plane containing the fiber axis and its slow birefringence axis is parallel to the writing radiation incidence plane containing the fiber axis. Practical Relevance. Theresearch results give the possibilityto make recommendations for the multipulse Bragg gratings inscription efficiency enhancement in the specialty birefringent fibers. The pre-inscription positioning of birefringence axes also makes it possible to reduce the polarization fading that is the noise source in phase interferometric sensors.


Keywords: fiber Bragg grating, interference scattering pattern, birefringence, excimer laser, multipulse inscription

Acknowledgements. This research has been carried out at ITMO University and supported by the Ministry of Education and Science of the Russian Federation (project No. 03.G25.31.0245).

References
 1.     Gribaev A.I., Pavlishin I.V., Stam A.M., Idrisov R.F., Varzhel S.V., Konnov K.A. Laboratory setup for fiber Bragg gratings inscription based on Talbot interferometer. Optical and Quantum Electronics, 2016, vol. 48, no. 12, art. 540.
2.     Kukushkin S.A., Osipov A.V., Shlyagin M.G. Formation of pores in the optical fiber exposed to intense pulsed UV radiation. Technical Physics. The Russian Journal of Applied Physics, 2006, vol. 51, no. 8, pp. 1035–1045. doi: 10.1134/S1063784206080135
3.     Kashyap R. Fiber Bragg Gratings. San Diego, Academic Press, 1999, 478 p.
4.     Zhao Y., Sun B., Liu Y., Ren J., Zhang J., Yang J., Canning J., Peng G.D., Yuan L. Polarization mode coupling and related effects in fiber Bragg grating inscribed in polarization maintaining fiber. Optics Express, 2016, vol. 24, no. 1, pp. 611–619. doi: 10.1364/oe.24.000611
5.     Carrara S.L.A., Kim B.Y., Shaw H.J. Elasto optic alignment of birefringent axes in polarization holding optical fiber. Optics Letters, 1986, vol. 11, no. 7, pp. 470–472. doi: 10.1364/ol.11.000470
6.     Fujikura Ltd. Product Bulletin #88112000 on the FSM-2O PM. Fujikura, 1990, 2 p.
7.     Aniano J.B. System for Determining Birefringent Axes in Polarization-Maintaining Optical Fiber, Patent US 5317575. 1994.
8.     Watkins L.S. Scаttering from side-illuminated clad glass fibers for determination of fiber parameters. Journal of the Optical Society of America, 1974, vol. 64, no. 6, pp. 767–772. doi: 10.1364/josa.64.000767
9.     Smithgall D.H., Watkins L.S., Frazee R.E. Jr. High-speed noncontact fiber-diameter measurement using for-ward light scattering. Applied Optics, 1977, vol. 16, no. 9, pp. 2395–2402. doi: 10.1364/ao.16.002395
10.  Eron'yan M.A. Sposob Izgotovleniya Volokonnykh Svetovodov, Sokhranyayushchikh Polyarizatsiyu Izlucheniya. Patent RU 2155359, 2000.
11.  Bureev S.V., Dukel'skii K.V., Eron'yan M.A., Komarov A.V., Levit L.G., Khokhlov A.V., Zlobin P.A., Strakhov V.I. Processing large blanks of anisotropic single-mode lightguides with elliptical cladding. Journal of Optical Technology, 2007, vol. 74, no. 4, pp. 297–298.
12.  Arkhipov S.V., Strigalev V.E., Soldatova N.S., Varzhel S.V., Munko A.S., Smirnova Y.D. How the efficiency with which Bragg gratings are recorded in birefringent optical fibers depends on the orientation of elliptical stress cladding. Journal of Optical Technology, 2016, vol. 83, no. 11, pp. 708–710. doi: 10.1364/JOT.83.000708
Arkhipov S.V., Strigalev V.E., Varzhel S.V., Smirnova Y.D., Soldatova N.S., Palanjyan D.A., Munko A.S., Petrov A.A. Birefringent optical fibers axial positioning technique for fiber Bragg gratings writing. Optical and Quantum Electronics, 2016, vol. 48, no. 12, art. 541. doi: 10.1007/s11082-016-0815-4


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2024 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика