DOI: 10.17586/2226-1494-2017-17-5-903-909


V. V. Markelov, A. V. Shukalov , M. O. Kostishin, I. O. Zharinov, O. O. Zharinov

Read the full article 
Article in Russian

For citation: Markelov V.V., Shukalov A.V., Kostishin М.О., Zharinov I.O., Zharinov O.O. Modeling of non-platform inertial navigation system as a component of aircraft navigation computer stand. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2017, vol. 17, no. 5, pp. 903–909 (in Russian). doi: 10.17586/2226-1494-2017-17-5-903-909


 Subject of Research. The non-platform inertial navigation system mathematical model is proposed. The non-platform inertial navigation system is an aircraft flight navigation parameters detector and a part of the airborne equipment. This model as a part of the simulation stand provides the modeling of the aircraft flight navigation parameters including the inaccuracies that may occur when a real non-platform inertial navigation system is active. Method. The flight navigation parameters calculation with the use of the proposed model is based on the calculation of simulated functioning parameters of the inertial system in horizontal plane. The initial data for calculation are the current programmed values of the flight navigation parameters and the aircraft orientation parameters without paying attention to the angular velocity and acceleration. The model initial data can be programmed with the simulation stand. The model contains the mathematical apparatus modeling inaccuracies that may occur when the inertial coordinates system tries to determine the aircraft location and its ground speed. Main Results. The proposed model provides the geodesic coordinates calculation and the ground speed when the orientation inaccuracies constant components are programmed including the gyroscope drift and the inertial system accelerometer inaccuracies. The modeling inertial system technical characteristics can determine the inaccuracy values, in particular, for the systems based on the ring laser gyroscopes. The model work-out results with the use of flight test data are given and the modeling inertial system inaccuracies evaluation is presented. Practical Relevance. The modeling realization of the non-platform inertial navigation system parameters as a part of the airborne equipment stand provides the information display system functioning work-out on the ground. At the analysis of basic design requirements for equipment development the inertial system model can be used for the preliminary functioning analysis of the non-platform inertial navigation system and the evaluation of the flight navigation parameters inaccuracies.

Keywords: navigation computer, non-platform inertial navigation system, mathematical model, modeling

 1.     HarinE.G. Integrated Data Processing of Aircraft Navigation Systems. Experience of Long-Term Practical Application. Moscow, MAI Publ., 2002, 259 p. (In Russian)
2.     Raspopov V.Ja., Tovkach S.E., Paramonov P.P., Sabo J.I. Vertical references for unmanned aerial vehicles. IEEE Aerospace and Electronic Systems, 2011, vol. 26, no.3, pp. 42–44. doi: 10.1109/maes.2011.5746185
3.     Raspopov V.Ya., Ivanov Yu.V., Alaluev R.V., Shukalov A.V., Pogorelov M.G., Shvedov A.P. The impact of sensor parameters on the accuracy of a strapdown inertial vertical gyroscope. Automation and Remote Control, 2013, vol. 74, no. 12, pp. 2189–2193. doi: 10.1134/s0005117913120217
4.     Paramonov P.P., Shukalov A.V., Raspopov V.Ya., Ivanov Yu.V., Shvedov A.P. Backup strapdown attitude control system on the Russian-made inertial sensors. Russian Aeronautics, 2014,vol. 57,no.3,pp. 319–323.doi: 10.3103/s1068799814030179
5.     Markelov V.V., Shukalov A.V., Kostishin M.O., Zharinov I.O., Nechaev V.A. Algorithm for calculation of the aircraft navigational flight parameters on RNAV routes. Mekhatronika, Avtomatizatsiya, Upravlenie, 2016, vol. 17, no. 10, pp. 697–702. (In Russian) doi: 10.17587/mau.17.697-702
6.     Markelov V.V., Shukalov A.V., Kostishin M.O., Zharinov I.O., Nechaev V.A. Adapting the navigation system of the aircraft for the flight solutions of problems in the system precision area navigation. Izvestiya TulGU. Tehnicheskie Nauki, 2016, no. 10, pp. 163–174.(In Russian)
7.     Markelov V.V., Kostishin M.O., Zharinov I.O., Nechaev V.A. Forming route trajectories for aiborne multi-function displays. Information and Control Systems, 2016, no. 1, pp. 40–49.(In Russian) doi: 10.15217/issn1684-8853.2016.1.40
8.     Markelov V., Shukalov A., Zharinov I., Kostishin M., Kniga I. The course correction implementation of the inertial navigation system based on the information from the aircraft satellite navigation system before take-off. IOP Conference Series: Materials Science and Engineering, 2016, vol. 124, no. 1, art. 012020. doi: 10.1088/1757-899X/124/1/012020
9.     Markelov V.V., Shukalov A.V., Zharinov I.O., Kostishin M.O., Ershov A.N. Constructing and displaying the trajectory path on the aircraft on-board cockpit multifunction displays. Indian Journal of Science and Technology, 2016, vol. 9, no. 21, pp. 9–21. doi: 10.17485/ijst/2016/v9i21/95219
10.  Kniga E., Zharinov I., Shukalov A., Nechaev V. Reliability evaluation of integrated modular avionics computational structures for different hardware configurations. Key Engineering Materials, 2016, vol. 685, pp. 350–354. doi: 10.4028/
11.  Korobeynikov A.G., Fedosovsky M.E., Maltseva N.K., Baranova O.V., Zharinov I.O., Gurjanov A.V., Zharinov O.O. Use of information technologies in design and production activities of instrument-making plants. Indian Journal of Science and Technology, 2016, vol. 9, no. 44, pp. 9–44. doi: 10.17485/ijst/2016/v9i44/104708
12.  Utkin S.B., Batova S.V., Blagonravov S.A., Konovalov P.V., Zharinov I.O. Automated construction of software configuration tables for real-time systems in avionics. Programming and Computer Software, 2015,vol. 41,no. 4,pp. 219–223. doi:10.1134/S0361768815040076
13.  Bogatyrev V.A. Reliability and Efficiency Reservations of Computer Networks. Informatsionnye Tehnologii, 2006, no. 9, pp. 25–30.(In Russian)
14.  Babich O.A. Information Processing in Navigation Complexes. Moscow, Mashinostroenie Publ., 1991, 512 p. (In Russian)
15.  Titterton D.H., Weston J.L. Strapdown Inertial Navigation Technology. 2nd ed. Institution of Electrical Engineers, 2004, 576 p.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2018 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.