DOI: 10.17586/2226-1494-2017-17-6-1167-1170


EXPERIMENTAL INVESTIGATION OF WINDING DIAMETER EFFECT ON OPTICAL PROPERTIES OF HI-BI FIBER WITH TIN COATING

V. S. Lavrov , A. V. Kulikov, A. B. Mukhtubayev


Read the full article 
Article in Russian

For citation: Lavrov V.S., Kulikov A.V., Mukhtubayev A.B. Experimental investigation of winding diameter effect on optical properties of Hi-Bi fiber with tin coating. Scientific and Technical Journal of Information Technologies, Mechanics and Optics , 2017, vol. 17, no. 6, pp. 1167–1170 (in Russian). doi: 10.17586/2226-1494-2017-17-6-1167-1170

Abstract
The paper presents experimentally obtained dependences of optical losses and h-parameter of the birefringent optical fiber with tin coating on a winding diameter. The optical losses were measured by insertion loss method, and h-parameter was measured by orthogonal polarizer method. The winding diameter varied from 5 mm to 35 mm. A minimal acceptable winding diameter of 30 mm was determined for this fiber used as a reference arm in interferometric sensor wherein optical losses are equal to 0.07 dB/m, and h-parameter is equal to 50×10-4.

Keywords: birefringent optical fiber, h-parameter, bend losses, winding, tin coating

Acknowledgements. This work was performed in ITMO University and was supported by the Ministry of Education and Science of the Russian Federation (the unique identifier of the project: RFMEFI57815X0109, Contract No.14.578.21.0109).

References
1.      Okosi T., Okamoto K., Otsu M., Nisihara H., Kuma K., Hatate K. Fiber-Optic Sensors. Leningrad, Energoatomidat Publ., 1990, 256 p. (in Russian)
2.      Fiber Optic Sensors: An Introduction for Engineers and Scientists. Ed. E. Udd. NY, John Wiley & Sons, 2011, 512 p. doi: 10.1002/9781118014103
3.      Teixeira J.G.V., Leite I.T., Silva S., Frazao O. Advanced fiber-optic acoustic sensors. Photonic Sensors,2014, vol. 4, no. 3, pp. 198–208. doi: 10.1007/s13320-014-0148-5
4.      Cranch G.A., Nash P.J., Kirkendall C.K. Large-scale remotely interrogated arrays of fiber-optic interferometric sensors for underwater acoustic applications. IEEE Sensors Journal, 2003, vol. 3, no. 1, pp. 19–30. doi: 10.1109/JSEN.2003.810102
5.      Meng Z., Hu Y., Ni M. et al. Development of a 32-element fibre optic hydrophone system. Proceedings of SPIE, 2004, vol. 5589, pp. 114–119. doi: 10.1117/12.577842
6.      Butusov M.M., Galkin S.L., Orobinskii S.P. Fiber Optics and Instrument Making. Leningrad, Mashinostroenie Publ., 1987, 328 p.
7.      Lavrov V.S., Plotnikov M.Y., Aksarin S.M. et al. Experimental investigation of the thin fiber-optic hydrophone array based on fiber Bragg gratings. Optical Fiber Technology, 2017, vol. 34, pp. 47–51. doi: 10.1016/j.yofte.2017.01.003
8.      Gukovich A.V., Plotnikov M.Yu. Experimental study of methods for sensitivity reducing in support arms of fiber-optic interferometric sensors. Proc. Congress of Young Scientists. St. Petersburg, ITMO University Publ., 2017. Available at: http://openbooks.ifmo.ru/ru/file/5485/5485.pdf (accessed: 25.10.2017).
9.      Aksarin S.M., Arkhipov S.V., Varzhel' S.V., Kulikov A.V., Strigalev V.E. Dependence investigation of the anisotropic single-mode fiber parameters on a winding diameter.Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2013, no. 6, pp. 22–26.(In Russian)


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2018 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика