DOI: 10.17586/2226-1494-2018-18-1-122-132


AN ALGORITHM FOR SEARCH AUTOMATION OF LIGHTING SOURCES OPTIMAL ARRANGEMENT IN URBAN ENVIRONMENT

A. V. Sender , A. V. Shiyan , A. V. Chirkina , A. M. Chirkin, D. I. Mouromtsev


Read the full article 
For citation: Sender A.V., Shiyan A.V., Chirkina A.V., Chirkin A.M., Mouromtsev D.I. An algorithm for search automation of lighting sources optimal arrangement in urban environment. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2018, vol. 18, no. 1, pp. 122–132 (in Russian). doi: 10.17586/2226-1494-2018-18-1-122-132

Abstract

 The paper presents research results on the optimal  lighting  arrangement using the potential of space and geometry in an urban environment. A local urban area such as a city block is selected as an object of research. In the process of the block geometry analysis the required number of light sources and their position with the given characteristics of the sources are calculated. The proposed algorithm is based on the concept of the isovist from the theory of spatial syntax and consists of two stages: visibility map creation and the optimal arrangement of lighting sources. The result of the algorithm operation is an illumination matrix with the optimal arrangement of light sources and a list of their coordinates. The presented algorithm can be used to estimate an urban light demand. The algorithm presented in the paper can be used for design of schematic urban lighting. In particular, it can be used in the early stages of design to assess the project’s potential.


Keywords: |Urban planning, urban design, illumination planning, Space Syntax theories

Acknowledgements. This paper is a part of the research project ADvISE (Data analysis for understanding the impact of urban space design on the social indicators of the city, the project of the Higher Technical School of Zurich). The work is partially supported by the RGNF grant No. 16-23-41007.

References
 
1.      Paskovic A. Urban Lighting: Planning for Public Spaces in Vancouver's Southeast False Creek. Diss. Queen’s University Kingston, Ontario, Canada, 2012.
2.      Smitka D. Alternatives in Light & Space: Rethinking Public Lighting in Shared Spaces. Master Thesis. RMIT University, Melbourne, Australia, 2011, 141 p.
3.      The Lighting Handbook. Zumtobel Lighting Group, 2017. Available at: http://www.zumtobel.com/PDB/teaser/RU/Lichthandbuch.pdf (accessed17.12.2017).
4.      Haans A., De Kort Y.A.W. Light distribution in dynamic street lighting: two experimental studies on its effects on perceived safety, prospect, concealment, and escape. Journal of Environmental Psychology, 2012, vol. 32, no. 4, pp. 342–352. doi: 10.1016/j.jenvp.2012.05.006
5.      Nutsford D., Reitsma F., Pearson A.L., Kingham S. Personalising the viewshed: visibility analysis from the human perspective. Applied Geography, 2015, vol. 62, pp. 1–7. doi: 10.1016/j.apgeog.2015.04.004
6.      Cucchiella F., De Berardinis P., Lenny Koh S.C., Rotilio M. Planning restoration of a historical landscape: a case study for integrating a sustainable street lighting system with conservation of historical values. Journal of Cleaner Production, 2017, vol. 165, pp. 579–588. doi: 10.1016/j.jclepro.2017.07.089
7.      Choi A.S., Jang S.J., Park B.C., Kim Y.O., Kim Y.S. Rational-design process and evaluation of street-lighting design for apartment complexes. Building and Environment, 2007, vol. 42, no. 8, pp. 3001–3013.
8.      Hale J.D., Davies G., Fairbrass A.J. et al. Mapping lightscapes: spatial patterning of artificial lighting in an urban landscape. PloS One, 2013, vol. 8, no. 5, art. e61460. doi: 10.1371/journal.pone.0061460
9.      Arnheim R. The Dynamics of Architectural Form: Based on the 1975 Mary Duke Biddle Lectures at the Cooper Union. University of California Press, 1977, vol. 376, 289 p.
10.    Renzler M., Reithmaier N., Reinhardt R., Pohl W., Ubmuller T. A road tunnel model for the systematic study of lighting situations. Tunnelling and Underground Space Technology, 2018, vol. 72, pp. 114–119. doi: 10.1016/j.tust.2017.11.017
11.    Choi A.S., Kim Y.O., Oh E.S., Kim Y.S. Application of the space syntax theory to quantitative street lighting design. Building and Environment, 2006, vol. 41, no. 3, pp. 355–366. doi: 10.1016/j.buildenv.2005.01.026
12.    Kim D., Park S. Improving community street lighting using CPTED: a case study of three communities in Korea. Sustainable Cities and Society, 2017, vol. 28, pp. 233–241. doi: 10.1016/j.scs.2016.09.016
13.    Murray A.T., Feng X. Public street lighting service standard assessment and achievement. Socio-Economic Planning Sciences, 2016, vol. 53, pp. 14–22. doi: 10.1016/j.seps.2015.12.001
14.    Natapov A., Fisher-Gewirtzman D. Visibility of urban activities and pedestrian routes: an experiment in a virtual environment. Computers, Environment and Urban Systems, 2016, vol. 58, pp. 60–70. doi: 10.1016/j.compenvurbsys.2016.03.007
15.    Schneider S., Tonn C., Bielik M., Donath D., Ruth J. Real-time solar analysis – Introducing a GPU-based method for calculating solar related performance criteria in the early design stages. Proc. Building Simulation and Optimization, BSO14. London, 2014, pp. 1–6.
16.   Weng J., Hu Y.K., Ying W. Study on calculation model of road lighting visibility. Science China Technological Sciences, 2010, vol. 53, no. 7, pp. 1768–1773. doi: 10.1007/s11431-010-3127-0
17.    Pantoni R., Brandao D. A confirmation-based geocast routing algorithm for street lighting systems. Computers and Electrical Engineering, 2011, vol. 37, no. 6, pp. 1147–1159. doi: 10.1016/j.compeleceng.2011.06.004
18.    SEP4 Roadway Lighting Design Guide. SaskPower Company, 2013. Available at: http://www.saskpower.com/wp-content/uploads/residential_streetlight_engineering_practices.pdf (accessed 20.12.2017).
19.    Wojnicki I., Kotulski L., Sedziwy A., Ernst S. Application of distributed graph transformations to automated generation of control patterns for intelligent lighting systems. Journal of Computational Science, 2017, vol. 23, pp. 20–30. doi: 10.1016/j.jocs.2017.09.011
20.    Quick Urban Analysis Kit. ETH Zurich. Available at: qua-kit.ethz.ch (accessed 20.12.2017).
21.    Pena-Garcia A., Hurtado A., Aguilar-Luzon M.C. Impact of public lighting on pedestrians’ perception of safety and well-being. Safety Science, 2015, vol. 78, pp. 142–148. doi: 10.1016/j.ssci.2015.04.009
22.    Rankel S. Future lighting and the appearance of cities at night: a case study. Urbani Izziv, 2014, vol. 25, no. 1, pp. 126–141. doi: 10.5379/urbani-izziv-en-2014-25-01-004
23.    Unver A. People’s Experience of Urban Lighting in Public Space. Master's Diss. Ankara, Turkey, Orta Doğu Teknik Üniversitesi, 2009.
24.    Baleja R., Bos P., Novak T., Sokansky K., Hanusek T. Increasing of visibility on the pedestrian crossing by the additional lighting systems. IOP Conference Series: Materials Science and Engineering, 2017, vol. 236, no. 1, art. 012099. doi: 10.1088/1757-899X/236/1/012099
25.    Green J., Perkins C., Steibach R., Edwards P. Reduced street lighting at night and health: a rapid appraisal of public views in England and Wales. Health and Place, 2015, vol. 34, pp. 171–180. doi: 10.1016/j.healthplace.2015.05.011
26.    Painter K. The influence of street lighting improvements on crime, fear and pedestrian street use, after dark. Landscape and Urban Planning, 1996, vol. 35, no. 2, pp. 193–201. doi: 10.1016/0169-2046(96)00311-8


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2018 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика