DOI: 10.17586/2226-1494-2018-18-2-212-219


DEFORMATION CONTROL METHOD OF COMPOSITE STRUCTURAL ELEMENTS BY FIBER-OPTIC ACOUSTIC EMISSION SENSOR

M. E. Efimov, A. V. Volkov, E. V. Litvinov


Read the full article 
Article in Russian

For citation: Efimov M.E., Volkov A.V., Litvinov E.V. Deformation control method of composite structural elements by fiber-optic acoustic emission sensor. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2018, vol. 18, no. 2, pp. 212–219 (in Russian). doi: 10.17586/2226-1494-2018-18-2-212-219

Abstract
Subject of Research.The paper presents the study of a graphite-epoxy composite plate strain detection possibility by the fiber-optic acoustic emission sensor mounted on its surface. Method. The proposed method consisted in additional low-frequency phase-generated carrier implementation in the impulse Fabry-Perot interferometer and its amplitude evaluation. The phase-generated carrier amplitude depends on the interferometer optical path difference, therefore, its value change can be used for the studied composite strain estimation. VCSEL with a wavelength of 1550 nm was used as a light source. The phase carrier was generated by current modulation of the light source that caused center wavelength shift of the VCSEL. Main Results. The low-frequency phase-generated carrier signal amplitude dependence on the interferometer optical path difference and wavelength shift of the light source were obtained. According to simulation results the sensitivity of the proposed method is 1.6 urad×ppm, 5.3 urad×ppm and 13.3 urad×ppm at different values of the coefficient Kd 30, 100 and 250 pm, respectively. Experimental study of the proposed method and results analysis were performed. According to experimental results, the accuracy of the proposed method was about 1´10–3% that corresponds to the sensor relative stretch of 10 me, while the accuracy of the market available fiber optic systems based on fiber Bragg grating sensors equals to 4 ppm. Practical Relevance.The proposed method can be used for strain detection of the graphite-epoxy composite constructions along with its acoustic emission control by one fiber-optic sensor.

Keywords: fiber-optic sensor, impulse Fabry-Perot interferometer, graphite-epoxy (Gr/Ep) composite, strain sensor, acoustic emission sensor, fiber Bragg grating (FBG)

Acknowledgements. This work was performed in ITMO University and was supported by the Ministry of Education and Science of the Russian Federation (Project No. 03.G25.31.0245).

References
1.          Di Sante R. Fibre optic sensors for structural health monitoring of aircraft composite structures: recent advances and applications. Sensors, 2015, vol. 15, no. 8, pp. 18666–18713. doi: 10.3390/s150818666
2.          Cairns D.S., Wood L.A. Composite Materials for Aircraft Structures. Montana State University, 2009. Available at: http://www.montana.edu/dcairns/documents/composites/MSUComposites2009.pdf (accessed: 01.03.2018)
3.          Kachlakev D. Strenghting Bridges Using Composite Materials. Report FHWA-OR-RD-98-08. Oregon, Oregon State University, 1998, 186 p.
4.          Roberts J.E. Composite Materials for Bridge Construction, 2002. Available at: http://www.quakewrap.com/frp%20papers/Composite-Materials-For-Bridge-Construction.pdf (accessed: 01.03.2018)
5.          Shenoi R.A., Dulieu-Barton J.M., Quinn S., Blake J.I. Boyd S.W. Composite materials for marine applications: key challenges for the future. Composite Materials, 2011, pp. 69–89. doi: 10.1007/978-0-85729-166-0_3
6.          de Oliveira R., Ramos C.A., Marques A.T. Health monitoring of composite structures by embedded FBG and interferometric Fabry-Pérot sensors. Computers and Structures, 2008, vol. 86, no. 3-5, pp. 340–346. doi: 10.1016/j.compstruc.2007.01.040
7.          Skontorp A. Structural integrity of quasi-isotropic composite laminates with embedded optical fibers. Journal of Reinforced Plastics and Composites, 2000, vol. 19, no. 13, pp. 1056–1077. doi: 10.1106/T6CC-VA7D-FDK6-0BNG
8.          Zhou G., Sim L.M. Damage detection and assessment in fibre-reinforced composite structures with embedded fibre optic sensors-review. Smart Materials and Structures, 2002, vol. 11, no. 6, pp. 925–939. doi: 10.1088/0964-1726/11/6/314
9.          Schaaf K., Nemat-Nasser S. Optimization of sensor introduction into laminated composite materials. Proceedings of SPIE, 2008, vol. 6932. doi: 10.1117/12.776315
10.        Derkevorkian A., Marsi S.F., Alvarenga J. et al. Strain-based deformation shape-estimation algorithm for control and monitoring applications. AIAA Journal, 2013, vol. 51, no. 9, pp. 2231–2240. doi: 10.2514/1.J052215
11.        Kahandawa G.C., Epaarachchi J., Wang H., Lau K.T. Use of FBG sensors for SHM in aerospace structures. Photonic Sensors, 2012, vol. 2, no. 3, pp. 203–214. doi: 10.1007/s13320-012-0065-4
12.        Ko W.L., Richards W.L., Tran V.T. Displacement Theories for In-Flight Deformed Shape Predictions of Aerospace Structures. NASA TP-2007-214612, 2007, 83 p.
13.        Kulikov A.V., Meshkovskij I.K., Efimov M.E. Fiber-Optic Interferometric Device for Detecting Phase Signals. Patent RU2624837, 2017.
14.        Belikin M.N., Plotnikov M.Yu., Strigalev V.E., Kulikov A.V., Kireenkov A.Yu. Experimental comparison of homodyne demodulation algorithms for phase fiber-optic sensor. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2015, vol. 15, no. 6, pp. 1008–1014. (in Russian) . doi: 10.17586/2226-1494-2015-15-6-1008-1014
15.        Dandridge A., Tveten A.B., Giallorenzi T.G. Homodyne demodulation scheme for fiber optic sensors using phase generated carrier. IEEE Transactions on Microwave Theory and Techniques, 1982, vol. 30, no. 10, pp. 1635–1641. doi: 10.1109/TMTT.1982.1131302
16.        Volkov A.V., Plotnikov M.Y., Mekhrengin M.V., Miroshnichenko G.P., Aleynik A.S. Phase modulation depth evaluation and correction technique for the PGC demodulation scheme in fiber-optic interferometric sensors. IEEE Sensors Journal, 2017, vol. 17, no. 13, pp. 4143–4150. doi: 10.1109/JSEN.2017.2704287
17.        Wang L., Zhang M., Mao X., Liao Y. The arctangent approach of digital PGC demodulation for optic interferometric sensors. Proceedings of SPIE, 2006, vol. 6292, art. 62921E. doi: 10.1117/12.678455
18.        Christian T.R., Frank P.A., Houston B.H. Real-time analog and digital demodulator for interferometric fiber optic sensors. Proceedings of SPIE, 1994, vol. 2191, pp. 324–336. doi: 10.1117/12.173962
19.        Oppenheim A. V, Schafer R.W., Buck J.R. Discrete Time Signal Processing. 2nd ed. Upper Saddle River, Prentice Hall, 1999, 870 p.
20.        Liang S., Zhang C., Lin W., Li L., Li C., Feng X., Lin B. Fiber-optic intrinsic distributed acoustic emission sensor for large structure health monitoring. Optics Letters, 2009, vol. 34, no. 12, pp. 1858–1860. doi: 10.1364/OL.34.001858
21.        Chen Z., Ansari F. Fiber optic acoustic emission distributed crack sensor for large structures. Journal of Structural Control, 2000, vol. 7, no. 1, pp. 119–129. doi: 10.1002/stc.4300070108
22.  Zhang X., Max J.J., Jiang X., Yu L., Kassi H. Experimental investigation on optical spectral deformation of embedded FBG sensors. Proceedings of SPIE, 2007, vol. 6478. doi: 10.1117/12.700807


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2018 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика