DOI: 10.17586/2226-1494-2018-18-2-268-277


A. V. Guryanov, D. A. Zakoldaev, A. V. Shukalov , I. O. Zharinov, M. O. Kostishin

Read the full article 
Article in Russian

For citation: Gurjanov A.V., Zakoldaev D.A., Shukalov A.V., Zharinov I.O., Kostishin M.O. Industry 4.0 digital production organization based on cyber and physical systems and ontologies. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2018, vol. 18, no. 2, pp. 268–277 (in Russian). doi: 10.17586/2226-1494-2018-18-2-268-277


Subject of Research. The paper proposes the work organization schemes in the Industry 4.0 instrument making production companies of “smart factory” type equipped with cyber and physical systems. Studies on the production cyber-physiphication are being carried out aimed at the development and implementation of ideas and decisions in the domestic industry, which will help to establish “smart companies” in our country capable of functioning in the conditions of digital economy and possessing new production technologies. Method.We used the work organization methods for item design manufacturing with the cyber and physical systems and ontologies implementation in the conditions of the companies of the future on the basis of the design automation general theory. Main Results. It is shown that the effect of the production companies proposed organization principles implementation in the factories of the future format can boost the Russian Federation industry transfer to the most advanced digital, intellectual production technologies, robotized systems, new materials and designing methods that corresponds to the Russian Federation State Scientific and Technical Policy in the field of instrument making and machine manufacturing. Practical Relevance. The results of this research can be applied in the development of automation design algorithms for instrument making (machine manufacturing) digital production operating in the conditions of the Russian Federation digital economy.

Keywords: Industry 4.0, cyber and physical systems, production, ontology

  1. Schwab K. The Fourth Industrial Revolution. NY, Crown Business, 2017, 192 p.
  2. Lee E.A. The past, present and future of cyber-physical systems: a focus on models. Sensors, 2015, vol. 15, no. 3, pp. 4837–4869. doi: 10.3390/s150304837
  3. Meissner H., Ilsen R., Aurich J.C. Analysis of control architectures in the context of Industry 4.0. Procedia CIRP,2017, vol. 62, pp. 165–169. doi: 10.1016/j.procir.2016.06.113
  4. Balasubramaniyan S., Srinivasan S., Buonopane F., Subathra B., Vain J., Ramaswamy S. Design and verification of cyber-physical systems using TrueTime, evolutionary optimization and UPPAAL. Microprocessors and Microsystems, 2016, vol. 42, pp. 37–48. doi: 10.1016/j.micpro.2015.12.006
  5. Fang Zh., Mo H., Wang Y., Xie M. Performance and reliability improvement of cyber-physical systems subject to degraded communication networks through robust optimization. Computers and Industrial Engineering, 2017, vol. 144, pp. 166–174. doi: 10.1016/j.cie.2017.09.047
  6. Hwang G., Lee J., Park J., Chang T.-W. Developing performance measurement system for Internet of Things and smart factory environment. International Journal of Production Research,2017, vol. 55, no. 9, pp. 2590–2602. doi: 10.1080/00207543.2016.1245883
  7. Lee K.H., Hong J.H., Kim T.G. System of systems approach to formal modeling of CPS for simulation-based analysis. ETRI Journal, 2015, vol. 37, no. 1, pp. 175–185. doi: 10.4218/etrij.15.0114.0863
  8. Ning H., Liu H., Ma J., Yang L.T., Huang R. Cybermatics: cyber-physical-social-thinking hyperspace based science and technology. Future Generation Computer Systems, 2016, vol. 56, pp. 504–522. doi: 10.1016/j.future.2015.07.012
  9. Qu T., Thurer M., Wang J., Wang Z., Fu H., Li C. System dynamics analysis for an Internet-of-Things-enabled production logistics system. International Journal of Production Research,2017, vol. 55, no. 9, pp. 2622–2649. doi: 10.1080/00207543.2016.1173738
  10. Vogel-Heuser B., Rosch S., Fischer J., Simon Th., Ulewicz S., Folmer J. Fault handling in PLC-based Industry 4.0 automated production systems as a basis for restart and self-configuration and its evaluation. Journal of Software Engineering and Applications, 2016, vol. 9, no. 1, pp. 1–43. doi: 10.4236/jsea.2016.91001 
  11. Wang L., Haghighi A. Combined strength of holons, agents and function blocks in cyber-physical systems. Journal of Manufacturing Systems, 2016, vol. 40, pp. 25–34. doi: 10.1016/j.jmsy.2016.05.002
  12. Zuehlke D. SmartFactory – towards a factory-of-things. Annual Reviews in Control, 2010, vol. 34, no. 1, pp. 129–138. doi: 10.1016/j.arcontrol.2010.02.008
  13. Zhou P., Zuo D., Hou K.-M., Zhang Zh. A decentralized compositional decision process in self-managed cyber physical systems. Sensors, 2017, vol. 17, no. 11, art. 2580. doi: 10.3390/s17112580
  14. Zhahg Zh., Eyisi E., Koutsonkos X., Porter J., Karsai G., Sztipanovits J. A co-simulation framework for design of time-triggered automotive cyber physical systems. Simulation Modelling Practice and Theory, 2014, vol. 43, pp. 16–33. doi: 10.1016/j.simpat.2014.01.001
  15. Liao Y., Deschamps S., Loures E.F.R., Ramos L.F.P. Past, present and future of Industry 4.0 – a systematic literature review and research agenda proposal. International Journal of Production Research, 2017, vol. 55, no. 12, pp. 3609–3629. doi: 10.1080/00207543.2017.1308576

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2018 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.