DOI: 10.17586/2226-1494-2018-18-3-421-427


DESIGN CONCEPTS FOR DIGITAL PROJECT AND PRODUCTION COMPANIES OF INDUSTRY 4.0 STANDARD

A. V. Guryanov, D. A. Zakoldaev, I. O. Zharinov, V. A. Nechaev


Read the full article 
Article in Russian

For citation: Gurjanov A.V., Zakoldaev D.A., Zharinov I.O., Nechaev V.A. Design concepts for digital project and production companies of Industry 4.0 standard. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2018, vol. 18, no. 3, pp. 421–427 (in Russian). doi: 10.17586/2226-1494-2018-18-3-421-4

Abstract

Subject of Research. The paper proposes work organization schemes for the project and production companies of the Industry4.0 standard in the mould of «digital factory» and «smart factory». The companies of the «digital factory» and «smart factory» types are the basis for the high-tech production in the future, which are being developed in the Russian Federation as a part of the National technological initiative in the «Tekhnet» direction.Method.We applied organization methods for project and production works in the development and manufacturing of item designing components in the conditions of the future factories on the basis of the automated design general theory in the item designing field.Main Results.It is shown that implementation effect of the proposed organization principles for project and production companies in the factories of the future format can contribute to the transfer of the Russian Federation industrial economy sector to work with the digital technologies. The main research results are the project and production work schemes in the Industry 4.0 companies of «digital factory» and «smart factory» types. Practical Relevance. The results of this research can be applied in the development of automation design algorithms for instrument making (machine manufacturing) digital production operating in the conditions of the Russian Federation digital economy.


Keywords: Industry 4.0, designing, production, scheme, company

References
 
  1. Lavrin A., Zelko M. Moving toward the digital factory in rawmaterial resources area. Acta Montanistica Slovaca, 2010, vol. 15,no. 3, pp. 225–231.
  2. Schwab K. The Fourth Industrial Revolution. NY, Crown Business, 2017, 192 p.
  3. Radziwon A., Bilberg A., Bogers M., Madsen E.S. The smart factory: exploring adaptive and flexible manufacturing solutions. Procedia Engineering, 2014, vol. 69, pp. 1184–1190. doi: 10.1016/j.proeng.2014.03.108
  4. Schuh G., Anderl R., Gausemeier J., ten Hompel M., Wahlster W. Industrie 4.0 Maturity Index. Managing the Digital Transformation of Companies. Munich, Herbert Utz Verlag, 2017, 60 p.
  5. Longo F., Nicoletti L., Padovano A. Smart operators in Industry 4.0: a human-centered approach to enhance operator’s capabilities and competencies with the new smart factory context. Computers and Industrial Engineering,2017,vol. 113,pp. 144–159. doi: 10.1016/j.cie.2017.09.016
  6. Meissner H., Ilsen R., Aurich J.C. Analysis of control architectures in the context of Industry 4.0. Procedia CIRP,2017, vol. 62, pp. 165–169. doi: 10.1016/j.procir.2016.06.113
  7. Poonpakdee P., Koiwanit J.,Yuangyai C. Decentralized network building change in large manufacturing companies towards Industry 4.0. Procedia Computer Science,2017,vol. 110,pp. 46–53. doi: 10.1016/j.procs.2017.06.113
  8. Hwang G., Lee J., Park J., Chang T.-W. Developing performance measurement system for Internet of Things and smart factory environment. International Journal of Production Research, 2017, vol. 55, no. 9, pp. 2590–2602. doi: 10.1080/00207543.2016.1245883
  9. Qu T., Thurer M., Wang J., Wang Z., Fu H., Li C. System dynamics analysis for an Internet-of-Things-enabled production logistics system. International Journal of Production Research,2017, vol. 55, no. 9, pp. 2622–2649. doi: 10.1080/00207543.2016.1173738
  10. Theorin A., Bengtsson K., Provost J., Lieder M., Johnsson Ch., Lundholm Th. An event-driven manufacturing information system architecture for Industry 4.0. International Journal of Production Research, 2017, vol. 55, no. 5, pp. 1297–1311. doi: 10.1080/00207543.2016.1201604
  11. Silva F., Gamarra C.J., Araujo Jr.A.H., Leonardo J. Product lifecycle management, digital factory and virtual commissioning: analysis of these concepts as a new tool of lean thinking. Proc. Int. Conf. on Industrial Engineering and Operations Management. Dubai, 2015, pp. 911–915.
  12. Wang Sh., Wan J., Li D., Zhang Ch. Implementing smart factory of Industrie 4.0: an outlook. International Journal of Distributed Sensor Networks, 2016, art. 3159805. doi: 10.1155/2016/3159805
  13. Zuehlke D. SmartFactory – towards a factory-of-things. Annual Reviews in Control, 2010, vol. 34, no. 1, pp. 129–138. doi: 10.1016/j.arcontrol.2010.02.008
  14. Jung K., Choi S.S., Kulvatunyou B., Cho H., Morris K.S. A reference activity model for smart factory design and improvement. Production Planning and Control, 2017, vol. 28, no. 2, pp. 108–122. doi: 10.1080/09537287.2016.1237686
  15. Shpilevoy V., Shishov A., Skobelev P., Kolbova E., Kazanskaia D., Shepilov Ya., Tsarev А. Multi-agent system «Smart factory» for real-time workshop management in aircraft jet engines production. IFAC Proceedings Volumes, 2013, vol. 46, no. 7, pp. 204–209. doi: 10.3182/20130522-3-BR-4036.00025
  16. Vogel-Heuser B., Rosch S., Fischer J., Simon Th., Ulewicz S., Folmer J. Fault handling in PLC-based Industry 4.0 automated production systems as a basis for restart and self-configuration and its evaluation. Journal of Software Engineering and Applications, 2016, vol. 9, no. 1, pp. 1–43. doi: 10.4236/jsea.2016.91001


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2018 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика