DOI: 10.17586/2226-1494-2018-18-4-561-566


M. V. Bykadorov, M. Y. Plotnikov, Волков А. В., P. Y. Dmitraschenko

Read the full article 
Article in Russian

For citation: Bykadorov M.V., Plotnikov M.Yu., Volkov A.V., Dmitraschenko P.Yu.. Study of gain factor effect of erbium doped fiber amplifier on noise floor level of fiber-optic interferometric sensor. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2018, vol. 18, no. 4, pp. 561–566 (in Russian). doi: 10.17586/2226-1494-2018-18-4-561-566


Subject of Research. The paper presents experimental study results of the gain factor effect of an erbium doped fiber amplifier on the noise floor level of a fiber-optic interferometric acoustic sensor. Fiber-optic sensor is based on a Michelson interferometer. The optical amplifier is located behind the compensating interferometer which induces the auxiliary phase modulation to the interference signal. The homodyne demodulation algorithm is used to recover the sensor phase signal. Method. During the experiment there were no external acoustical impacts on the sensor. The power control of optical signals from the fiber amplifier was performed. Noise signals from the sensor were written into data files under the different values of the fiber amplifier gain factor. Spectral estimations of the noise floor level of the fiber-optic interferometric sensor were performed by the averaged modified periodogram method under the different values of the fiber amplifier gain factor. Obtained results were used to define the dependence of the noise floor level of the fiber-optic interferometric sensor on the fiber amplifier gain factor. Main Results. Mean noise floor levels were equal to 64 urad/Hz0.5 at 355 Hz, 68 urad/Hz0.5 at 450 Hz and 66 urad/Hz0.5 at 500 Hz. Experimental results showed insignificant increase of the noise floor level of the fiber-optic interferometric sensor with the growth of the optical amplifier gain factor from 14.6 dB to 25.8 dB. The gain factor increase was about several percent and did not exceed inaccuracies of performed measurements. Practical Relevance. The absence of significant changes in the noise floor level of the considered fiber-optic sensor with the changing of the fiber amplifier gain factor is caused by the intensity noise suppression of the used demodulation scheme. The considered fiber amplifier might be used for the amplification of optical signals from the fiber-optic multiplexed array of fiber-optic sensors without the significant deterioration of their noise performance on condition that the homodyne demodulation algorithm with the intensity noise suppression is used.

Keywords: fiber-optic sensor, erbium doped fiber amplifier, gain factor, noise floor level

Acknowledgements. This work was performed in ITMO University and was supported by the Ministry of Education and Science of the Russian Federation (project No. 03.G25.31.0245).

1.     Fiber Optic Sensors: An Introduction for Engineers and Scientists. Ed. E. Udd. NY, John Wiley & Sons, 2011, 512 p. doi: 10.1002/9781118014103
2.     Yin S., Ruffin P.B., Yu F.T.S. Fiber Optic Sensors. 2nd ed. CRC Press, 2008, 492 p.
3.     Nash P.J., Cranch G.A., Hill D.J. Large-scale multiplexed fibre-optic arrays for geophysical applications. Proceedings of SPIE, 2000, vol. 4202, pp. 55–65.
4.     Cranch G.A., Nash P.J., Kirkendall C.K. Large-scale remotely interrogated arrays of fiber-optic interferometric sensors for underwater acoustic applications. IEEE Sensors Journal, 2003, vol. 3, no. 1, pp. 19–30. doi: 10.1109/JSEN.2003.810102
5.     Nakstad H., Kringlebotn J.T. Realisation of a full-scale fibre-optic ocean bottom seismic system. Proceedings of SPIE, 2008, vol. 7004. doi: 10.1117/12.791158
6.     Liao Y., Austin E., Nash P.J., Kingsley S.A., Richardson D.J. Highly scalable amplified hybrid TDM/DWDM array architecture for interferometric fiber-optic sensor systems. Journal of Lightwave Technology, 2013, vol. 31, no. 6, pp. 882–888. doi: 10.1109/JLT.2012.2234084
7.     Cranch G.A. et al. Large-scale remotely pumped and interrogated fiber-optic interferometric sensor array. IEEE Photonics Technology Letters, 2003, vol. 15, no. 11,
pp. 1579–1581. doi: 10.1109/LPT.2003.818686
8.     Cranch G.A., Nash. P.J. Large-scale multiplexing of interferometric fiber-optic sensors using TDM and DWDM. Journal of Lightwave Technology, 2001, vol. 19, pp. 687–699. doi: 10.1109/50.923482
9.     Cranch G.A., Nash P.J. High multiplexing gain using TDM and WDM in interferometric sensor arrays. Proceedings of SPIE, 1999, vol. 3860, pp. 531–537.
10.  Kersey A.D., Dandridge A., Davis A.R., Kirdendall C.K., Marrone M.J., Gross D.G. 64-element time-division multiplexed interferometric sensor array with EDFA telemetry. Optical Fiber Communications, 1996, pp. 270–271.
11.  Becker P.M., Olsson A.A., Simpson J.R. Erbium-Doped Fiber Amplifiers: Fundamentals and Technology. Academic Press, 1999, 451 p.
12.  Christian T.R., Frank P.A., Houston B.H. Real-time analog and digital demodulator for interferometric fiber optic sensors. Proceedings of SPIE, 1994, vol. 2191, pp. 324–336.
13.  Belikin M.N., Plotnikov M.Yu., Strigalev V.E., Kulikov A.V., Kireenkov A.Yu. Experimental comparison of homodyne demodulation algorithms for phase fiber-optic sensor. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2015, vol. 15, no. 6, pp. 1008–1014. (in Russian) doi: 10.17586/2226-1494-2015-15-6-1008-1014
14.  Kersey A.D., Marrone M.J., Davis M.A. Polarisation-insensitive fibre optic Michelson interferometer. Electronics Letters, 1991, vol. 27, no. 6, pp. 518–520. doi: 10.1049/el:19910325
15.  Volkov A.V., Plotnikov M.Y., Mekhrengin M.V., Miroshnichenko G.P., Aleynik A.S. Phase modulation depth evaluation and correction technique for the PGC demodulation scheme in fiber-optic interferometric sensors. IEEE Sensors Journal, 2017, vol. 17, no. 13, pp. 4143–4150. doi: 10.1109/JSEN.2017.2704287
16.  Nikitenko A.N., Plotnikov M.Y., Plotnikov A.V., Mekhrengin M.V., Kireenkov A.Y. PGC-Atan demodulation scheme with the carrier phase delay compensation for fiber-optic interferometric sensors. IEEE Sensors Journal, 2018, vol. 18, no. 5, pp. 1985–1992. doi: 10.1109/JSEN.2018.2792540
17.  Solonina A.I., Ulakhovich D.A., Arbuzov S.M., Solov'eva E.B. Fundamentals of Digital Signal Processing. 2nd ed. St. Petersburg, BKhV-Peterburg Publ., 2005, 768 p. (in Russian)
18.  Sergienko A.B. Digital Signal Processing.St. Petersburg, BKhV-Peterburg Publ., 2011, 758 p. (in Russian)
19.  Blotekjaer K. Fundamental noise sources that limit the ultimate resolution of fiber optic sensors. Proceedings of SPIE, 1998, vol. 3555, pp. 1–12. doi: 10.1117/12.318192
20.  Freeman R.L. Fiber-Optic Systems for Telecommunications. NY, Wiley, 2002.
21.  Wang L., Zhang M., Mao X., Liao Y. The arctangent approach of digital PGC demodulation for optic interferometric sensors. Proceedings of SPIE, 2006, vol. 6292, art. 62921E. doi: 10.1117/12.678455

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2018 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.