doi: 10.17586/2226-1494-2023-23-3-448-454


A model of a refractive fiber optic sensor sensing element based on MMF-SMF-MMF structure using surface plasmon resonance

K. A. Ivoilov, D. O. Gagarinova, A. A. Zykina, I. K. Meshkovsky, S. A. Plyastsov


Read the full article  ';
Article in Russian

For citation:
Ivoilov K.A., Gagarinova D.O., Zykina A.A., Meshkovskiy I.K., Plyastsov S.A. A model of a refractive fiber optic sensor sensing element based on MMF-SMF-MMF structure using surface plasmon resonance. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2023, vol. 23, no. 3, pp. 448–454 (in Russian). doi: 10.17586/2226-1494-2023-23-3-448-454


Abstract
This paper presents a mathematical model of the sensitive element of a refractometric fiber-optic sensor the principle of operation of which is based on the phenomenon of surface plasmon resonance. The sensing element design is a sequential connection of a multimode fiber (MMF), a single-mode fiber (SMF), and a multimode fiber forming an MMF-SMF-MMF structure. The SMF site is coated with a thin film of gold. To model the element, the approach used in calculating the classical Kretschmann configuration for volumetric optical structures was applied. The refractive index of the fiber is calculated based on the Sellmeyer equation, and the refractive index of the gold is determined using the Drude model. The simulation results are compared with experimentally obtained transmission spectra of fabricated samples of sensing elements. For approbation of the model, the sensing elements of fiber-optic sensors with the following parameters are made: core diameter of multimode fiber 62.5 μm, core diameter of singlemode fiber 9 μm, coating SMF-segment with 50 nm gold film. Transmission spectra of fiber-optic sensor sensing elements in aqueous glucose solutions of various concentrations were obtained. It is demonstrated that the proposed model describes well the experimentally obtained transmission spectra of sensitive elements based on MMF-SMF-MMF structures in the region of surface plasmon resonance. The proposed model can be used to optimize the design of the sensitive element of refractometric fiber-optic sensors in order to increase the sensitivity. The proposed model implies its use in the development of an algorithm for interrogation of sensing elements based on fiber MMF-SMF-MMF structures.

Keywords: surface plasmon resonance, heterocore structure, fiber optic sensor, refractive index measurement

References
  1. Homola J. Surface plasmon resonance sensors for detection of chemical and biological species. Chemical Reviews, 2008, vol. 108, no. 2, pp. 462–493. https://doi.org/10.1021/cr068107d
  2. Miyazaki C.M., Shimizu F.M., Ferreira M. Surface plasmon resonance (SPR) for sensors and biosensors. Nanocharacterization Techniques, 2017, pp. 183–200. https://doi.org/10.1016/B978-0-323-49778-7.00006-0
  3. Wang X., Ma M., Wang X., Wang S. Surface plasmon resonance sensors for concentration and reaction kinetic detections. Analytical Chemistry - Advancement, Perspectives and Applications, 2021. https://doi.org/10.5772/intechopen.92549
  4. Mrksich M., Sigal G.B., Whitesides G.M. Surface plasmon resonance permits in situ measurement of protein adsorption on self-assembled monolayers of alkanethiolates on gold. Langmuir, 1995, vol. 11, no. 11, pp. 4383–4385. https://doi.org/10.1021/la00011a034
  5. Nguyen L.V., Hwang D., Moon S., Moon D.S., Chung Y. High temperature fiber sensor with high sensitivity based on core diameter mismatch. Optics Express, 2008, vol. 16, no. 15, pp. 11369–11375. https://doi.org/10.1364/OE.16.011369
  6. Xu F., Chen D., Peng B., Xu J.,Wu G. All-fiber refractometer based on core mismatch structure. Laser Physics, 2012, vol. 22, no. 10, pp. 1577–1580. https://doi.org/10.1134/S1054660X12100271
  7. Zhang Y., Zhou A., Qin B., Deng H., Liu Z., Yang J., Yuan L. Refractive index sensing characteristics of single-mode fiber-based modal interferometers. Journal of Lightwave Technology, 2014, vol. 32, no. 9, pp. 1734–1740. https://doi.org/10.1109/JLT.2014.2311579
  8. Marfu'ah, Amalia N.R., Hatta A.M., Pratama D.Y. Multimode-singlemode-multimode optical fiber sensor coated with novolac resin for detecting liquid phase alcohol. AIP Conference Proceedings, 2018, vol. 1945, pp. 020031. https://doi.org/10.1063/1.5030253
  9. Yin B., Li Y., Liu Z., Feng S., Bai Y., Xu Y., Jian S. Investigation on a compact in-line multimode-single-mode-multimode fiber structure. Optics & Laser Technology, 2016, vol. 80, pp. 16–21. https://doi.org/10.1016/j.optlastec.2015.12.018
  10. Sun A., Wu Z., Wan C., Yang C. All-fiber optic acoustic sensor based on multimode-single mode-multimode structure. Optik, 2012, vol. 123, no. 13, pp. 1138–1139. https://doi.org/10.1016/j.ijleo.2011.07.040
  11. Sun T., Liu Z., Liu Y., Zhang Y., Jing Z., Peng W. All-fiber liquid-level sensor based on in-line MSM fiber structure. Photonic Sensors, 2021, vol. 11, no. 3, pp. 291–297. https://doi.org/10.1007/s13320-020-0586-1
  12. Roy P., Chaudhuri P.R. Characteristics of cladding mode-based refractive index sensor using MMF-SMF-MMF configuration. Journal of Optics, 2023, vol. 52, no. 1, pp. 296–306. https://doi.org/10.1007/s12596-022-00885-1
  13. Yamamoto M. Surface plasmon resonance (SPR) theory: Tutorial. Review of Polarography, 2002, vol. 48, no. 3, pp. 209–237. https://doi.org/10.5189/revpolarography.48.209
  14. Johnson P.B., Christy R.W. Optical constants of the noble metals. Physical Review B, 1972, vol. 6, no. 12, pp. 4370–4379. https://doi.org/10.1103/PhysRevB.6.4370
  15. Tan C.Z. Determination of refractive index of silica glass for infrared wavelengths by IR spectroscopy. Journal of Non-Crystalline Solids, 1998, vol. 223, no. 1-2, pp. 158–163. https://doi.org/10.1016/S0022-3093(97)00438-9
  16. Rakić A.D., Djurišić A.B., Elazar J.M., Majewski M.L. Optical properties of metallic films for vertical-cavity optoelectronic devices. Applied Optics, 1998, vol. 37, no. 22, pp. 5271–5283. https://doi.org/10.1364/AO.37.005271
  17. Hashemi M., Xiao S.,. Farzad M.H. Phase study of the generated surface plasmon waves in light transmission through a subwavelength aperture. Journal of Nanophotonics, 2014, vol. 8, no. 1, pp. 083094. https://doi.org/10.1117/1.JNP.8.083094
  18. Poljak D., Cvetković M. Theoretical background: an outline of Computational Electromagnetics (CEM). Human Interaction with Electromagnetic Fields, 2019, pp. 21–52. https://doi.org/10.1016/B978-0-12-816443-3.00010-8


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2024 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика