doi: 10.17586/2226-1494-2024-24-1-1-10


Structural and spectral properties of YAG:Nd, YAG:Ce and YAG:Yb nanocrystalline powders synthesized via modified Pechini method

A. Moussaoui, D. V. Bulyga, A. I. Ignatiev, S. K. Evstropiev, N. V. Nikonorov


Read the full article  ';
Article in Russian

For citation:
Moussaoui A., Bulyga D.V., Ignatiev A.I., Evstropiev S.K., Nikonorov N.V. Structural and spectral properties of YAG:Nd, YAG:Ce and YAG:Yb nanocrystalline powders synthesized via modified Pechini method. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2024, vol. 24, no. 1, pp. 1–10 (in Russian). doi: 10.17586/2226-1494-2024-24-1-1-10


Abstract
Synthesis of nanocrystalline yttrium-aluminum garnet doped with neodymium was performed via modified Pechini methods. Evolution of material during synthesis was studied using differential thermal analysis; the structure and morphology of synthesized nanopowders were studied using scanning electron microscopy and x-ray diffraction. It was shown that the use of an additional low-temperature stabilizer leads to formation of crystalline yttrium-aluminum garnet phase at lower temperatures. It was shown that the formation of nanocrystals occurs at the temperature of about 883 °C. Obtained powders can be used as precursors for ceramics sintering or be introduced into the optical fiber in order to fabricate optical amplifiers.

Keywords: YAG, luminescence, Pechini method, polyvinylpyrrolidone

References
  1. Chen L., Luo Y., Xia Y., Kang B., Yu S. Densification, microstructure and optical properties of YAG transparent ceramics prepared by dry-pressing and gelcasting. Optical Materials, 2021, vol. 121, pp. 111509. https://doi.org/10.1016/j.optmat.2021.111509
  2. Li J., Liu J., Liu B., Liu W., Zeng Y., Ba X., Xie T., Jiang B., Liu Q., Pan Y., Feng X., Guo J. Influence of heat treatment of powder mixture on the microstructure and optical transmission of Nd:YAG transparent ceramics. Journal of the European Ceramic Society, 2014, vol. 34, no. 10, pp. 2497–2507. https://doi.org/10.1016/j.jeurceramsoc.2014.03.004
  3. Wang H.M., Huang Z.Y., Jiang J.S., Liu K., Duan M.Y., Lu Z.W., Cedelle J., Guan Z.W., Lu T.C., Wang Q.Y. Unique mechanical properties of nano-grained YAG transparent ceramics compared with coarse-grained partners. Materials & Design, 2016, vol. 105, pp. 9–15. https://doi.org/10.1016/j.matdes.2016.04.094
  4. Sim S.-M., Keller K.A., Mah T.-I. Phase formation in yttrium aluminum garnet powders synthesized by chemical methods. Journal of Materials Science, 2000, vol. 35, no. 3, pp. 713–717. https://doi.org/10.1023/A:1004709401795
  5. Tachiwaki T., Yoshinaka M., Hirota K., Ikegami T., Yamaguchi O. Novel synthesis of Y3Al5O12 (YAG) leading to transparent ceramics. Solid State Communications, 2001, vol. 119, no. 10-11, pp. 603–606. https://doi.org/10.1016/s0038-1098(01)00293-9
  6. Sluzky E., Lemoine M., Hesse K. Phosphor development for α‐silicon liquid crystal light valve projection display. Journal of the Electrochemical Society, 1994, vol. 141, no. 11, pp. 3172. https://doi.org/10.1149/1.2059297
  7. Lu C.H., Huang C.H. Sensitized photoluminescence of Eu3+ and Gd3+-doped Y3Al5O12 phosphors prepared via a reverse microemulsion process. Chemistry Letters, 2004, vol. 33, no. 12, pp. 1568–1569. https://doi.org/10.1246/cl.2004.1568
  8. Benayas A., del Rosal B., Pérez‐Delgado A., Santacruz‐Gómez K., Jaque D., Hirata G.A., Vetrone F. Nd:YAG near‐infrared luminescent nanothermometers. Advanced Optical Materials, 2015, vol. 3, no. 5, pp. 687–694. https://doi.org/10.1002/adom.201400484
  9. Evstropiev S.K., Demidov V.V., Sadovnichii R.V., Pchelkin G.A., Shurupov D.N., Matrosova A.S., Dukelskii K.V., Bulyga D.V., Nikonorov N.V., Podrukhin Y.F. YAG : R3+(R = CE, DY, YB) nanophosphor-based luminescent fibre-optic sensors for temperature measurements in the range 20-500 C. Quantum Electronics, 2022, vol. 52, no. 1, pp. 94–99. https://doi.org/10.1070/QEL17971
  10. Bulyga D.V., Evstropiev S.K. Intermediate products of Yb:YAG laser ceramics fabrication: structural features, morphology, and luminescent properties. Research on Chemical Intermediates, 2021, vol. 47, no. 8, pp. 3501–3514. https://doi.org/10.1007/s11164-021-04484-w
  11. Saladino M.L., Nasillo G., Martino D.C., Caponetti E. Synthesis of Nd:YAG nanopowder using the citrate method with microwave irradiation. Journal of Alloys and Compounds, 2010, vol. 491, no. 1-2, pp. 737–741. https://doi.org/10.1016/j.jallcom.2009.11.054
  12. Laishram K., Mann R., Malhan N. Single step synthesis of yttrium aluminum garnet (Y3Al5O12) nanopowders by mixed fuel solution combustion approach. Ceramics International, 2011, vol. 37, no. 8, pp. 3743–3746. https://doi.org/10.1016/j.ceramint.2011.05.052
  13. Li J.G., Ikegami T., Lee J.-H., Mori T., Yajima Y. Co-precipitation synthesis and sintering of yttrium aluminum garnet (YAG) powders: the effect of precipitant. Journal of the European Ceramic Society, 2000, vol. 20, no. 14-15, pp. 2395–2405. https://doi.org/10.1016/s0955-2219(00)00116-3
  14. Ikesue A., Kinoshita T., Kamata K., Yoshida K. Fabrication and optical properties of high‐performance polycrystalline Nd:YAG ceramics for solid‐state lasers. Journal of the American Ceramic Society, 1995, vol. 78, no. 4, pp. 1033–1040. https://doi.org/10.1111/j.1151-2916.1995.tb08433.x
  15. Li X., Liu H., Wang J., Cui H., Han F., Boughton R.I. Production of nanosized YAG powders with spherical morphology and nonaggregation via a solvothermal method. Journal of the American Ceramic Society, 2004, vol. 87, no. 12, pp. 2288–2290. https://doi.org/10.1111/j.1151-2916.2004.tb07507.x
  16. Caponetti E., Martino D.C., Saladino M.L., Leonelli C. Preparation of Nd:YAG nanopowder in a confined environment. Langmuir, 2007, vol. 23, no. 7, pp. 3947–3952. https://doi.org/10.1021/la0625906
  17. Moussaoui A., Bulyga D.V., Evstropiev S.K., Ignatiev A.I., Nikonorov N.V., Podruhin Y.F., Sadovnichii R.V. Modified Pechini method by PVP addition for Nd:Gd2O3 nanophosphors fabrication. Ceramics International, 2021, vol. 47, no. 24, pp. 34307–34313. https://doi.org/10.1016/j.ceramint.2021.08.341
  18. Volkova N.A., Evsropiev S.K., Nikonorov N.V., Evstropyev K.S. Specific Features of interactions of polyvinylpyrrolidone molecules with zinc and silver ions in aqueous solutions according to IR spectroscopy data. Optics and Spectroscopy, 2019, vol. 127, no. 4, pp. 738–741. https://doi.org/10.1134/s0030400x19100308
  19. Guerbous L., Boukerika A. Nanomaterial host bands effect on the photoluminescence properties of Ce-doped YAG nanophosphor synthesized by sol-gel method. Journal of Nanomaterials, 2015, vol. 2015, pp. 617130. https://doi.org/10.1155/2015/617130
  20. Ji X., Kang B., Deng J., Huang H., Wang X. Thermal decomposition and evolved gas analysis of neodymium-doped yttrium aluminum garnet precursor prepared by co-precipitation. Thermochimica Acta, 2013, vol. 552, pp. 23–27. https://doi.org/10.1016/j.tca.2012.11.021
  21. AitMellal O., Oufni L., Messous M.Y., Tahri M., Neatu Ş., Florea M., Neatu F., Secu M. Structural properties and near-infrared light from Ce3+/Nd3+-co-doped LaPO4 nanophosphors for solar cell applications. Journal of Materials Science: Materials in Electronics, 2022, vol. 33, no. 7, pp. 4197–4210. https://doi.org/10.1007/s10854-021-07615-6
  22. Boyer D., Bertrand-Chadeyron G., Mahiou R. Structural and optical characterizations of YAG:Eu3+ elaborated by the sol–gel process. Optical Materials, 2004, vol. 26, no. 2, pp. 101–105. https://doi.org/10.1016/j.optmat.2003.11.005
  23. Xia G., Zhou S., Zhang J., Xu J. Structural and optical properties of YAG:Ce3+ phosphors by sol–gel combustion method. Journal of Crystal Growth, 2005, vol. 279, no. 3-4, pp. 357–362. https://doi.org/10.1016/j.jcrysgro.2005.01.072
  24. Miller F.A., Wilkins C.H. Infrared spectra and characteristic frequencies of inorganic ions. Analytical Chemistry, 1952, vol. 24, no. 8, pp. 1253–1294. https://doi.org/10.1021/ac60068a007
  25. He X., Liu X., Li R., Yang B., Yu K., Zeng M., Yu R. Effects of local structure of Ce3+ ions on luminescent properties of Y3Al5O12:Ce nanoparticles. Scientific Reports, 2016, vol. 6, pp. 22238. https://doi.org/10.1038/srep22238
  26. Yang H., Lee D.K., Kim Y.S. Spectral variations of nano-sized Y3Al5O12:Ce phosphors via codoping/substitution and their white LED characteristics. Materials Chemistry and Physics, 2009, vol. 114, no. 2-3, pp. 665–669. https://doi.org/10.1016/j.matchemphys.2008.10.019
  27. Klug H.P., Alexander L.E. Quantitative analysis of powder mixtures. X-ray Diffraction Procedures, 1954.
  28. Shannon R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A: Crystal Physics, Diffraction, Theoretical and General Crystallography, 1976, vol. 32, no. 5, pp. 751–767. https://doi.org/10.1107/s0567739476001551
  29. Zhu Q.Q., Li S., Yuan Q., Zhang H., Wang L. Transparent YAG:Ce ceramic with designed low light scattering for high-power blue LED and LD applications. Journal of the European Ceramic Society, 2021, vol. 41, no. 1, pp. 735–740. https://doi.org/10.1016/j.jeurceramsoc.2020.09.006
  30. Zhydachevskii Y., Syvorotka I.I., Vasylechko L., Sugak D., Borshchyshyn I.D., Luchechko A.P., Vakhula Ya.I., Ubizskii S.B., Vakiv M.M., Suchocki A. Crystal structure and luminescent properties of nanocrystalline YAG and YAG:Nd synthesized by sol–gel method. Optical Materials, 2012, vol. 34, no. 12, pp. 1984–1989. https://doi.org/10.1016/j.optmat.2011.12.023
  31. Hassanzadeh-Tabrizi S.A. Synthesis and luminescence properties of YAG:Ce nanopowder prepared by the Pechini method. Advanced Powder Technology, 2012, vol. 23, no. 3, pp. 324–327. https://doi.org/10.1016/j.apt.2011.04.006
  32. Yu S., Jing W., Tang M., Xu T., Yin W., Kang B. Fabrication of Nd:YAG transparent ceramics using powders synthesized by citrate sol-gel method. Journal of Alloys and Compounds, 2019, vol. 772, pp. 751–759. https://doi.org/10.1016/j.jallcom.2018.09.184


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2024 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика