I. P. Gurov

Read the full article 


Peculiarities of signals formation in spectral interferometry and optical coherence tomography are considered. Basic relations are given defining minimal depth coordinate value of an investigated object, where single period of spectral interference signal is acquired and a value of the wave length increment set according to the depth range, where spectral interference signals are registered. The estimate of resolving power of the spectral interfereometry and optical coherence tomography systems with tunable wave length is given taking into account a spectral range of wave length tuning. It is shown that the ratio of the wave length mean value and the range of the wave length tuning defines the resolving power in depth of an investigated object, while the maximum depth range, within which investigation of an object’s micro structure by the spectral optical coherence tomography is possible does not depend on the range of the wave length tuning being determined by the wave length (wave number) tuning step. Numerical estimates of the parameters mentioned above are presented when using light sources in near infrared range, as well as relations and estimates of interference fringe visibility dependent on registered relative intensity of a measuring wave.

Keywords: spectral interferometry, optical coherence tomography, reconfigurable wave length

1. Vienot J.-C., Goedgebuer J.-P., Lacourt A. Space and time variables in optics and holography: recent experimental aspects // Applied Optics. 1977. V. 16. N 2. P. 454–461.
2. Emde M.F., de Boeij W.P., Pshenichnikov M.S., Wiersma D.A. Spectral interferometry as an alternative to time-domain heterodyning // Optics Lett. 1997. V. 22. N 17. P. 1338–1340.
3. Hlubina P., Gurov I., Chugunov V. Slightly dispersive white-light spectral interferometry to measure distances and displacements // Optik. 2003. V. 114. N 9. P. 389–393.
4. Reolon D., Jacquot M., Verrier I., Brun G., Veillas C. Broadband supercontinuum interferometer for highresolution profilometry // Optics Express. 2006. V. 14. N 1. P. 128–137.
5. Kumar V.N., Rao D.N. Using interference in the frequency domain for precise determination of thickness and refractive indices of normal dispersive materials // J. Opt. Soc. Am. B. 1995. V. 12. N 9. P. 1559–1563.
6. Hlubina P., Lunacek J., Ciprian D. White-light spectral interferometry and reflectometry to measure thickness of thin films // Proc. of SPIE. 2009. V. 7389. P. 738926-1–738926-8.
7. Iaconis C., Walmsley I.A. Spectral phase interferometry for direct electric-field reconstruction of ultrashort optical pulses // Optics Lett. 1998. V. 23. N 10. P. 792–794.
8. Yetzbacher M.K., Courtney T.L., Peters W.K. Spectral restoration for femtosecond spectral interferometry with attosecond accuracy // J. Opt. Soc. Am. B. 2010. V. 27. N 5. P. 1104–1117.
9. Hlubina P., Gurov I., Chugunov V. White-light spectral interferometric technique to measure the wavelength dependence of the spectral bandpass of a fibre-optic spectrometer // J. Mod. Optics. 2003. V. 50. N 13. P. 2067–2074. Lepetit L., Chériaux G., Joffre M. Linear techniques of phase measurement by femtosecond spectral interferometry for applications in spectroscopy // J. Opt. Soc. Am. B. 1995. V. 12. N 12. P. 2467– 2474.
10. Lepetit L., Chériaux G., Joffre M. Linear techniques of phase measurement by femtosecond spectral interferometry for applications in spectroscopy // J. Opt. Soc. Am. B. 1995. V. 12. N 12. P. 2467–2474.
11. Albrecht A.W., Hybl J.D., Gallagher S.M., Jonas D.M. Experimental distinction between phase shifts and time delays: implications for femtosecond spectroscopy and coherent control of chemical reactions // J. Chem. Phys. 1999. V. 111. P. 10934–10956.
12. Oldenburg A.L., Xu C., Boppart S.A. Spectroscopic optical coherence tomography and microscopy // IEEE J. Select. Topics Quantum Electron. 2007. V. 13. N 6. P. 1629–1640.
13. Verrier I., Jacquot M., Brun G., Veillas C., Ben Houcine K. Imaging through scattering medium by recording 3D «spatial-frequential» interferograms // Optics Commun. 2006. V. 267. N 2. P. 310–317.
14. Choma M.A., Sarunic M.V., Yang C.H., Izatt J.A. Sensitivity advantage of swept source and Fourier domain optical coherence tomography // Optics Express. 2003. V. 11. N 18. P. 2183–2189.
15. Васильев В.Н., Гуров И.П. Сравнительный анализ методов оптической когерентной томографии // Изв. вузов. Приборостроение. 2007. Т. 50. № 7. С. 30–40.
16. Гуров И.П., Волынский М.А., Жукова Е.В., Маргарянц Н.Б. Исследование растительных тканей мето- дом оптической когерентной микроскопии // Научно-технический вестник информационных техноло- гий, механики и оптики. 2012. № 5 (81). С. 42–47.
17. Hillmann D., Bonin T., Lührs C., Franke G., Hagen-Eggert M., Koch P., Hüttmann G. Common approach for compensation of axial motion artifacts in swept-source OCT and dispersion in Fourier-domain OCT // Optics Express. 2012. V. 20. N 6. P. 6761–6776.
18. Wong A., Mishra A., Bizheva K., Clausi D.A. General Bayesian estimation for speckle noise reduction in optical coherence tomography retinal imagery // Optics Express. 2010. V. 18. N 8. P. 8338–8352.
Copyright 2001-2017 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.