THERMOELECTRIC PROPERTIES OF HOT-PRESSED p-TYPE Mg2Si0.3Sn0.7 SOLID SOLUTION

G. N. Isachenko, L. V. Bochkov, A. Y. Samunin, M. I. Fedorov, L. P. Bulat, E. A. Gurieva, A. Shik


Read the full article  ';
Article in Russian


Abstract

It is shown that thermoelectric energy conversion which gives the possibility for utilizing a low potential heat is one of the ways for adoption of energy-saving technologies; and semiconductor materials with p-type and n-type conductivities having high thermoelectric figure of merit are necessary for operation of thermoelectric generators. The paper deals with possibility of usage of the p-Mg2Si0.3Sn0.7 solid solution (with a nanostructured modification) as a couple for the well studied thermoelectric material based on n-Mg2Si-Mg2Sn. A technological scheme for fabrication of heavily doped Mg2Si0.3Sn0.7 solid solution of p-type by hot pressing from nanopowder is developed. The given technology has made it possible to reduce duration of a homogeneous material fabrication and has improved its physical and chemical properties. The samples were made by three ways: direct fusion for polycrystals fabrication; hot pressing from microparticles; nanostructuring, i.e. hot pressing from nanoparticles. By X-ray diffraction it is shown that sizes of structural elements in the fabricated samples are about 40 nm. The probe technique is used for measurement of electric conductivity and Seebeck coefficient. The stationary absolute method is used for measurement of thermal conductivity. Thermoelectric figure of merit is defined by measured values of kinetic coefficients in the temperatures range of 77 – 800 K. It was demonstrated, that electric conductivity, Seebeck coefficient and the power factor do not depend practically on a way of solid solution preparation. Thermal conductivity of samples pressed from nanoparticles has appeared to be higher, than of samples, obtained by direct fusion; i.e. in this case nanostructuring has not led to increase of thermoelectric figure of merit. The conclusion is drawn, that polycrystalline semiconductor Mg2Si0.3Sn0.7 can be used as a p-branch for a thermoelectric generator though nanostructuring has not led to the figure of merit growth. The assumption is made, that thermoelectric figure of merit improvement can be expected at the further reduction of the nanograins size.


Keywords: thermoelectric power conversion, thermoelectric properties, thermoelectric generators, Seebeck coefficient, nanostructures, thermoelectric figure of merit, silicides, magnesium compounds

References
1.          NANO4TE cluster. Available at: http://www.nano4te-cluster.eu/ (accessed 02.04.2014).
2.          4th Thermoelectric Conference Utilizing Waste Heat in Transport and Industry. Available at: http://www.its.org/system/files/140311_TEG_Programm_en_V10_final.pdf (accessed 02.04.2014).
3.          Thermoelectric Handbook: Macro to Nano/ Ed. D.M. Rowe. CRC Press, 2005, 1014 p.
4.          Zaitsev V.K., Fedorov M.I., Gurieva E.A., Eremin I.S., Konstantinov P.P., Samunin A.Yu., Vedernikov M.V. Highly effective Mg2Si1-xSnx thermoelectric. Physical Review B - Condensed Matter and Materials Physics, 2006, vol. 74, no. 4, art. no. 045207. doi: 10.1103/PhysRevB.74.045207
5.          Isoda Y., Nagai T., Fuziu H., Imai Y., Shinohara Y. Thermoelectric properties of Sb-doped Mg2Si0.5Sn0.5. Proc. of 25th International Conference on Thermoelectrics, ICT'06. Vienna, Austria, 2006, pp. 406–410. doi: 10.1109/ICT.2006.331283
6.          Zhang Q., He J.,Zhu T.J.,Zhang S.N., Zhao X.B., Tritt T.M. High figures of merit and natural nanostructures in Mg2Si0.4Sn0.6 based thermoelectric materials. Applied Physics Letters, 2008, vol. 93, no. 10, art. no. 102109. doi: 10.1063/1.2981516
7.          ChoiS.-M.,Kim K.-H.,Kim I.-H.,Kim S.-U.,Seo W.-S. Thermoelectric properties of the Bi-doped Mg2Si system. Current Applied Physics, 2011, vol.11, no. 3 SUPPL, pp. S388–S391. doi: 10.1016/j.cap.2011.01.031
8.          Isachenko G.N., Zaĭtsev V.K., Fedorov M.I., Burkov A.T., Gurieva E.A., Konstantinov P.P., Vedernikov M.V. Kinetic properties of p-Mg2Si x Sn1− x solid solutions for x <0.4. Physics of the Solid State, 2009, vol. 51, no. 9, pp. 1796–1799. doi: 10.1134/S1063783409090066
9.          Isoda Y., Tada S., Nagai T., Fujiu H., Shinohara Y. Thermoelectric properties of p-typeMg2.00Si0.25Sn0.75 with Li and Ag double doping. Journal of Electronic Materials, 2010, vol. 39, no. 9, pp. 1531–1535. doi: 10.1007/s11664-010-1280-7
10.       Fedorov M.I., Zaitsev V.K., Isachenko G.N. High effective thermoelectrics based on the Mg2Si-Mg2Sn solid solution. Diffusion and Defect Data Pt.B: Solid State Phenomena, 2011, vol. 170, pp. 286–292. doi: 10.4028/www.scientific.net/SSP.170.286
11.       Ma Yi., Hao Q., Poudel B., Lan Y., Yu Bo, Wang D., Chen G., Ren Z. Enhanced thermoelectric figure-of-merit in p-type nanostructured bismuth antimony tellurium alloys made from elemental chunks. Nano Letters, 2008, vol. 8, no. 8, pp.2580–2584. doi: 10.1021/nl8009928
12.       Minnich A.J., Dresselhaus M.S., Ren Z.F., Chen G. Bulk nanostructured thermoelectric materials: current research and future prospects. Energy and Environmental Science, 2009, vol. 2, no. 5, pp. 466–479. doi: 10.1039/b822664b
13.       Lan Y., Minnich A.J., Chen G., Ren Z. Enhancement of thermoelectric figure-of-merit by a bulk nanostructuring approach. Advanced Functional Materials, 2010, vol. 20, no. 3, pp. 357–376. doi: 10.1002/adfm.200901512
14.       Dmitriev A.V., Zvyagin I.P. Current trends in the physics of thermoelectric materials. Physics-Uspekhi, 2010, vol. 53, no. 8, pp. 789–803.
15.       Bulat L.P., Pshenai-Severin D.A., Karatayev V.V., Osvenskii V.B., Parkhomenko Yu.N., Lavrentev M., Sorokin A., Blank V.D., Pivovarov G.I., Bublik V.T., Tabachkova N.Yu. Bulk nanocrystalline thermoelectrics based on Bi-Sb-Te solid solution.The Delivery of Nanoparticles. Ed. A.A. Hashim. InTech, 2012, P. 454–486. doi: 10.5772/34829
16.       Pshenai-Severin D.A., Fedorov M.I., Samunin A.Y.The influence of grain boundary scattering on thermoelectric properties of Mg2Si and Mg2Si0.8Sn0.2. Journal of Electronic Materials, 2013, vol. 42, no. 7, pp. 1707–1710. doi: 10.1007/s11664-012-2403-0
17.       Nikitin E.N., Tkalenko E.N., Zaitsev V.K., Zaslavskii A.I., Kuznetsov A.K. Issledovanie diagrammy sostoyanii i nekotorykh svoistv tverdykh rastvorov Mg2Si-Mg2Sn [Study state diagram and some properties of Mg2Si-Mg2Sn solid solutions]. Izvestiya AN SSSR. Neorganicheskie materialy, 1968, vol. 4, no. 11, pp. 1902–1906.
18.       Samunin A.Y., Zaitsev V.K., Konstantinov P.P.,Fedorov M.I.,Isachenko G.N.,Burkov A.T., Novikov S.V.,Gurieva E.A. Thermoelectric properties of hot-pressed materials based on Mg2SinSn1-n. Journal of Electronic Materials, 2013, vol. 42, no. 7, pp. 1676–1679. doi: 10.1007/s11664-012-2372-3
19.       Kurlov A.S., Gusev A.I. Determination of the particle sizes, microstrains, and degree of inhomogeneity in nanostructured materials from X-ray diffraction data. Glass Physics and Chemistry,2007, vol. 33, no. 3, pp. 276–282. doi: 10.1134/S1087659607030169
20.       Burkov A.T., Heinrich A., Konstantinov P.P., Nakama T., Yagasaki K. Experimental set-up for thermopower and resistivity measurements at 100–1300 K. Measurement Science and Technology, 2001, vol. 12, no. 3, pp. 264–272. doi: 10.1088/0957-0233/12/3/304
21.       Petrov A.V. Metodiki izmereniya teploprovodnosti poluprovodnikov pri vysokikh temperaturakh [Techniques for measuring the thermal conductivity at high temperatures]. Termoelektricheskie svoistva poluprovodnikov. Sbornik trudov I i II soveshchanii po termoelektrichestvu [Thermoelectric properties of semiconductors. Proceedings of the I and II meetings on thermoelectricity] / Ed. V.A. Kutasov. Moscow, Leningrad, AN SSSR Publ., 1963,pp. 27–35.


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2024 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика