MODIFICATION OF SURFACE LAYERS FOR SILICATE GLASSES BY ELECTRON IRRADIATION

V. S. Brunov, O. A. Podsvirov, A. I. Sidorov, D. V. Churaev


Read the full article 
Article in Russian


Abstract

Experimental research results of silicate glass surface layers modification by the influence of electron beams with 5-50 keV energies and 20-50 mC/cm2 doses are presented. It is shown that during the glasses exposure to an electron beam with 20-50 keV electron energies, a gradient optical waveguide with increased refractive index on waveguide axis Δn = 0.01-0.04 is formed in the surface layer. Сhemical etching rate is increased in the exposed area by up to two times which is related to glass grid destruction. Depending on irradiation dose thin film or silver nanoparticles with the size less than 20nm are formed on the surface of the silver containing glasses for electron energies less than 10 keV. Silver films drawn on the surface of the glass are dissolved into the glass bulk for electron energies 20-50 keV and 20-50 mC/cm2 dose. Basic mechanisms causing these effects are: chemical bonds breaking of spatial glass grid by high energy electrons, formation of negative volume charge inside the glass and field migration of positive metal ions into the volume charge region. Achieved results can be used in photonics, integral optics and nanoplasmonics device fabrication.


Keywords: electron irradiation, optical waveguide, silver film, silver nanoparticles, plasmon resonance

References
 1.     Engheta N., Salandrino A., Alu A. Circuit elements at optical frequencies: nanoinductors, nanocapacitors, and nanoresistors. Physical Review Letters, 2005, vol. 95, no. 9, art. no. 095504. doi: 10.1103/PhysRevLett.95.095504
2.     Ams M., Marshall G.D., Dekker P., Dubov M., Mezentsev V.K., Bennion I., Withford M.J. Investigation of ultrafast laser–photonic material interactions: challenges for directly written glass photonics. IEEE Journal on Selected Topics in Quantum Electronics, 2008, vol. 14, no. 5, pp. 1370–1388. doi: 10.1109/JSTQE.2008.925809
3.     Qiu J., Miura K., Hirao K. Femtosecond laser-induced microfeatures in glasses and their applications. Journal of Non-Crystalline Solids, 2008, vol. 354, no. 12–13, pp. 1100–1111. doi: 10.1016/j.jnoncrysol.2007.02.092
4.     Quaranta A., Cattaruzza E., Gonella F. Modeling the ion exchange process in glass: Phenomenological approaches and perspectives. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2008, vol. 149, pp. 133–139. doi: 10.1016/j.mseb.2007.11.016
5.     Gallagher J.G., de la Rue R.M. Single-mode stripe optical waveguides formed by silver ion exchange. Electronics Letters, 1976, vol. 12, no. 16, pp. 397–398. doi: 10.1049/el:19760304
6.     Femtosecond Laser Micromachining: Photonic and Microfluidic Devices in Transparent Materials/ Eds R. Osellame, G. Cerullo, R. Ramponi. Berlin, Heidelberg, Springer-Verlag, 2012, 483 p.
7.     Tervonen A., West B.R., Honkanen S. Ion-exchanged glass waveguide technology: a review. Optical Engineering, 2011, vol. 50, no. 7, art. no. 071107. doi: 10.1117/1.3559213
8.     Stepanov A.L. Modification of implanted metal nanoparticles in dielectrics by high-power laser pulses. Reviews on Advanced Materials Science, 2003, vol. 4, no. 2, pp. 123–138.
9.     Zavestovskaya I.N. Laser nanostructuring of materials surfaces. Quantum Electron, 2010, vol. 40, no. 11, pp. 942–954. doi: 10.1070/QE2010v040n11ABEH014447
10.  Obraztsov P.A., Nashchekin A.V., Panfilova A.V., Brunkov P.N., Nikonorov N.V., Sidorov A.I. Formation of silver nanoparticles on the silicate glass surface after ion exchange. Physics of the Solid State, 2013, vol. 55, no. 6, pp. 1272–1278. doi: 10.1134/S1063783413060267
11.  Ignat'ev A.I., Nashchekin A.V., Nevedomskii V.M., Podsvirov O.A., Sidorov A.I., Solov'ev A.P., Usov O.A. Formation of silver nanoparticles in photothermorefractive glasses during electron irradiation. Technical Physics. The Russian Journal of Applied Physics, 2011, vol. 56, no. 5, pp. 662–667. doi: 10.1134/S1063784211050148
12.  Podsvirov O.A., Ignatiev A.I., Nashchekin A.V., Nikonorov N.V., Sidorov A.I., Tsekhomskii V.A., Usov O.A., Vostokov A.V. Modification of Ag containing photo-thermo-refractive glasses induced by electron-beam irradiation. Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, 2010, vol. 268, no. 19, pp. 3103–3106. doi: 10.1016/j.nimb.2010.05.061
13.  Podsvirov O.A., Vostokov A.V., Sidorov A.I., Tsekhomskiǐ V.A. Formation of copper nanocrystals in photochromic glasses under electron irradiation and heat treatment. Physics of the Solid State, 2010, vol. 52, no. 9, pp. 1906–1909. doi: 10.1134/S1063783410090192
14.  Sidorov A.I., Nashchekin A.V., Nevedomsky V.N., Usov O.A., Podsvirov O.A. Self-assembling of silver nanoparticles in glasses under electron beam irradiation. International Journal of Nanoscience, 2011, vol. 10, no. 6, pp. 1265–1268. doi: 10.1142/S0219581X11008411
15.  Klimov V.V. Nanoplazmonika [Nanoplasmonics]. Moscow, FIZMATLIT Publ., 2009, 480 p.
16.  Kriebig U., Vollmer M. Optical properties of metal clusters. Berlin, Springer-Verlag, 1995, 532 p.
17.  Nikonorov N.V., Sidorov A.I., Tsekhomsky V.A. Silver nanoparticles in oxide glasses: Technologies and properties, Silver Nanoparticles / Ed. D.P. Perez. Vukovar, In-Tech, 2010, pp. 177–201.
18.  Spravochnik tekhnologa-optika[Optician technologist handbook] / Eds S.M. Kuznetsov, M.A. Okatov. Leningrad, Mashinostroenie Publ., 1983, 414 p.
Copyright 2001-2017 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика