M. V. Tchernycheva, V. P. Marek, A. S. Chirtsov, D. A. Shvager

Read the full article 
Article in Russian


Simple numerical models of low-pressure air gas discharge have been developed based on modern concepts of nonlocal plasma methods of the computational simulation of multi-component discharge environments. Voltage drop at the discharge gap has been calculated as a sum of incidences in the cathode sheath and on the positive column of a glow discharge as part of the semi-empirical approach. Electron impact ionization of the ground state, the recombination of charged particles on the walls of the discharge tube, ion-electron emission from the cathode, and the energy loss of electrons in collisions with ground state molecules have been taken into account in the models. The calculated voltage drop, depending on the pressure, has been compared with the results of another numerical discharge model based on the solutions of hydrodynamic equations for the particle densities in a two-dimensional case. Within these approximations, both models give satisfactory agreement between their results, which are strongly underestimated against the experiment corresponding to the normal highpressure glow discharge. The resulting discrepancy can be explained by an incompleteness of elementary processes taken into account in the simulation. For example, an unaccounted presence of gases from triatomic molecules as an impurity can lead to an increase in the collision energy losses of electrons, which in turn should lead to an increased electric field in the positive column, as compared with the values obtained in the models.

Keywords: glow discharge, computational modeling, positive column, cathode sheath, normal discharge, abnormal discharge, semi-empirical model, two-dimensional model

 1.          BogdanovE.A., Kudryavtsev A.A., Ochikova Z.S. Main scenarios of spatial distribution of charged and neutral components in SF6 plasma. IEEE Transactions on Plasma Science, 2013, vol. 41, no. 12, pp. 3254–3267.doi: 10.1109/TPS.2013.2278839
2.          Bogdanov E.A., Kapustin K.D., Kudryavtsev A.A., Chirtsov A.S.  Different approaches to fluid simulation of the longitudinal structure of the atmospheric-pressure microdischarge in helium. Technical Physics. The Russian Journal of Applied Physics, 2010, vol. 55, no. 10, pp. 1430–1442. doi: 10.1134/S1063784210100063
3.          Bogdanov E.A., Chirtsov A.S., Kudryavtsev A.A. Fundamental nonambipolarity of electron fluxes in 2D plasmas. Physical Review Letters, 2011, vol. 106, no. 19, art. no. 195001. doi: 10.1103/PhysRevLett.106.195001
4.          Kaganovich I.D., Demidov V.I., Adams S.F. Raitses Y. Non-local collisionless and collisional electron transport in low-temperature plasma. Plasma Physics and Controlled Fusion, 2009, vol. 51, no. 12, art. no. 124003. doi: 10.1088/0741-3335/51/12/124003
5.          Sovremennye problemy fiziki gazovogo razryada[Modern problems of gas discharge physics]. Available at: /science/discharge/discharge.html (accessed 12.11.2013).
6.          Studentam i shkol'nikam – knigi – gazovyi razryad[For students and schoolchildren – books – gas discharge]. Available at: (accessed 12.11.2013).
7.          Avtaeva S.V., Otorbaev D.K., Skornyakov A.V. Eksperimental'noe issledovanie kharakteristik tleyushchego razryada v vozdukhe [Experimental study of the characteristics of a glow discharge in air]. VestnikKRSU, 2002, vol. 2, no. 2, pp. 4–6.
8.          Mahadevan S., Raja L.L. Simulations of direct-current air glow discharge at pressures 1 Torr: Discharge model validation. Journal of Applied Physics, 2010, vol. 107, no. 9, art. no. 093304. doi: 10.1063/1.3374711
9.          Gambling W.A., Edels H. The high-pressure glow-discharge in air. British Journal of Applied Physics, 1954, vol. 5, no. 1, pp. 36–39. doi: 10.1088/0508-3443/5/1/309
10.       Granovskii V.L. Elektricheskii tok v gaze. Ustanovivshiisya tok [Electric current in the gas. Sustained current]. Moscow, Nauka Publ., 1971, 490 p.
11.       Kudryavtsev A.A., Chirtsov A.S., Yakovleva V.I., Mustafaev A.S., Tsyganov A.B. Electron energy spectra in helium observed in a microplasma collisional electron spectroscopy detector. Technical Physics. The Russian Journal of Applied Physics, 2012, vol. 57, no. 10, pp. 1325–1330. doi: 10.1134/S1063784212100106
12.       Kudryavtsev A.A., Smirnov A.S., Tsendin L.D.  Fizika tleyushchego razryada[Physics of glow discharge]. St. Petersburg, Lan' Publ., 2010, 512 p.
13.       Compilation of electron cross sections used by A.V. Phelps. Available at: (accessed 14.09.2013).
14.       Sobel'man I.I. Vvedenie v teoriyu atomnykh spektrov [Introduction to the Theory of Atomic Spectra]. Moscow, Fizmatgiz Publ.,1963, 640 p.
15.       Vainshtein L.A., Sobel'man I.I., Yukov E.A. Secheniya vozbuzhdeniya atomov i ionov elektronami [Excitation cross sections of atoms and ions by electrons]. Moscow, Nauka Publ., 1973, 142 p.
16.       Ochkur V.I.O metode Borna-Oppengeimera v teorii atomnykh stolknovenii [On the method of Born-Oppenheimer approximation in the theory of atomic collisions]. Soviet Physics, 1963, vol. 45, pp. 753.
17.       Gordeev S.V., Chirtsov A.S. Stolknovitel'nye perekhody mezhdu razlichayushchimisya po spinu vysokovozbuzhdennymi urovnyami atomov vtoroi gruppy [Collisional transitions between distinct spin highly excited levels of atoms of the second group]. Vestnik SPbSU. Seriya 4. Fizika. Khimiya, 1991, no. 1, pp. 146–149.
18.       Marek V.P., Chirtsov A.S. Issledovanie stolknovitel'nykh perekhodov s izmeneniem spina mezhdu vysokovozbuzhdennymi sostoyaniyami atomov geliya metodom lazernoi nakachki [Investigation of collisional transitions with a change in spin between highly excited states of helium atoms by laser pumping]. Izvestiya Mezhdunarodnoi akademii nauk vysshei shkoly, 2012, no. 2 (60), pp. 29–36.
19.       Marek V., Chirtsov A. Research of collisional displacement of diverse highly exited states of Helium by means of the method of levels laser injection in cluster and plasma zone.Proc. of Int. Scientific Seminar Physics of Laser Processes and Applications. Ryazan, 2012, pp. 96–101.
20.       Russian Comsol Page. HUMUSOFT. Available at: (accessed 14.09.2010).
21.       Raizer Yu.P. Fizika gazovogo razryada [Gas discharge physics]. Moscow, Nauka Publ., Fizmatlit Publ., 1987, 592 p.
22.       Marek V.P., Chirtsov A.S. Varianty ispol'zovaniya komp'yuternykh tekhnologii dlya intensifikatsii praktikumov i priblizheniya uchebnykh rabot k nauchnym issledovaniyam [Variants of using computer technology to intensify the workshops and educational approach to research work]. Informatika i obrazovanie, 2013, no. 9(248), pp. 22–34.
23.       AshiharaO. Theelectronenergylossratesbypolarmolecules.Tokyo, InstituteofSpaceandAeronauticalScience,1975, vol.40, no.530, pp. 257.
24.       Dalidchik F.I., Sayasov Yu.S.Recombination of electrons in molecular gases. Journal of Experimental and Theoretic Physics, 1965, vol.49, pp. 302–305.
25.       Rudge M.R.H. Theory of ionization of atoms by electron impact. Reviews of Modern Physics, 1968, vol. 40, pp. 564. doi: 10.1103/RevModPhys.40.564
26.       von Engel A. Ionized Gases. Oxford, Clarendon Press, 1965.
27.       Dobretsov L.N., Gomoyunova M.V. Emissionnaya elektronika [Emission electronics]. Moscow, Nauka Publ., 1966, 564 p.
28.       Braun S.C. Elementary processes in gas discharge plasma. MIT Press., Cambridge.
29.       Catalogues - LD DIDACTIC. Available at: (accessed 12.05.2013).
30.       Marek V.P., Chirtsov A.S. Razrabotka mul'timediinykh opisanii dlya novogo laboratornogo praktikuma po fizike [Development of multimedia descriptions for the new laboratory workshop on physics]. Materialy XII mezhdunarodnoi konferentsii Fizika v sisteme sovremennogo obrazovaniya [Proc. of XII Int. Conf. Physics in the System of Modern Education]. Petrozavodsk, PetrSU Publ., 2013, vol. 2, pp. 217–220.
31.       Chirtsov A.S., Abutin M.V., Marek V.P., Mikushev S.V. Novye varianty ispol'zovanija informatsionnyh i mul'timediynykh tehnologii dlya realizatsii nepreryvnogo vysshego obrazovaniyja [New uses of information and multimedia technologies for realizing continuous higher education]. Fizicheskoe obrazovanie v vuzakh, 2012, vol. 18, no. 1, pp. 109–125.
Copyright 2001-2017 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.