DOI: 10.17586/2226-1494-2018-18-1-24-31


ALGORITHM FOR ADAPTIVE SENSORLESS CONTROL OF SYNCHRONOUS MOTORS

D. N. Bazylev, A. A. Pyrkin, A. A. Bobtsov


Read the full article 
Article in Russian

For citation: Bazylev D.N., Pyrkin A.A., Bobtsov A.A. Algorithm for adaptive sensorless control of synchronous motors. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2018, vol. 18, no. 1, pp. 24–31 (in Russian). doi: 10.17586/2226-1494-2018-18-1-24-31

Abstract
 We present an algorithm for adaptive sensorless control of a synchronous motor with permanent magnets based on nonlinear observer of rotor position. The proposed algorithm is based on the vector control method, which uses position and velocity estimates for generation of control signals. The developed observer is an extension of recently proposed robust observer, which generates the estimate of rotor position using magnetic flux estimates. The key feature of this observer is that only two motor parameters should be known for position estimation – stator resistance and inductance. The results of the experiments performed in the work demonstrate the effectiveness of the sensorless control algorithm with the original observer in comparison with the modern industrial sensorless controller. In turn, the proposed sensorless control algorithm with a modified observer results in a higher accuracy of position estimation in comparison with the original version.

Keywords: sensorless control, synchronous motor with permanent magnets, adaptive control, nonlinear observer, parameter identification

Acknowledgements. This paper is supported by the Government of the Russian Federation (grant 074-U01) and Russian Foundation for Basic Research (grant 17-58-53129). The authors express special gratitude to Slobodan Vukosavic, Alex Stankovic and Romeo Ortega for their assistance in this study.

References
 1.       Foo G., Rahman M.F. Sensorless vector control of interior permanent magnet synchronous motor drives at very low speed without signal injection. IET Electric Power Applications, 2010, vol. 4, no. 3, pp. 131–139. doi: 10.1049/iet-epa.2009.0024
2.       Acarnley P.P., Watson J.F. Review of position-sensorless operation of brushless permanent-magnet machines. IEEE Transactions on Industrial Electronics, 2006, vol. 53, no. 2, pp. 352–362. doi: 10.1109/TIE.2006.870868
3.       Nam K.H. AC Motor Control and Electric Vehicle Applications. CRC Press, 2010, 435 p.
4.       Kim H., Son J., Lee J. A high-speed sliding-mode observer for the sensorless speed control of a PMSM. IEEE Transactions on Industrial Electronics, 2011, vol. 58, no. 9, pp. 4069–4077. doi: 10.1109/TIE.2010.2098357
5.       Kommuri S.K., Veluvolu K.C., Defoort M. Robust observer with higher-order sliding mode for sensorless speed estimation of a PMSM. Proc. European Control Conference. Zurich, Switzerland, 2013, pp. 4598–4603.
6.       Lu K., Lei X., Blaabjerg F. Artificial inductance concept to compensate nonlinear inductance effects in the back EMF-based sensorless control method for PMSM. IEEE Transactions on Energy Conversion, 2013, vol. 28, no. 3, pp. 593–600. doi: 10.1109/TEC.2013.2261995
7.       Hinkkanen M., Tuovinen T., Harnefors L., Luomi J. A combined position and stator-resistance observer for salient PMSM drives: design and stability analysis. IEEE Transactions on Power Electronics, 2011, vol. 27, no. 2, pp. 601–609. doi: 10.1109/TPEL.2011.2118232
8.       Paulus D., Stumper J.F., Kennel R. Sensorless control of synchronous machines based on direct speed and position estimation in polar stator-current coordinates. IEEE Transactions on Power Electron, 2013, vol. 28, no. 5, pp. 2503–2513. doi: 10.1109/TPEL.2012.2211384
9.       Raca D., Garcia P., Reigosa D.D., Briz F., Lorenz R.D. Carrier-signal selection for sensorless control of PM synchronous machines at zero and very low speeds. IEEE Transactions on Industry Applications, 2010, vol. 46, no. 1, pp. 167–178. doi: 10.1109/TIA.2009.2036551
10.     Wallmark O., Harnefors L. Sensorless control of salient PMSM drives in the transition region. IEEE Transactions on Industrial Electronics, 2006, vol. 53, no. 4, pp. 1179–1187. doi: 10.1109/TIE.2006.878315
11.     Bobtsov A., Pyrkin A., Ortega R., Vukosavic S., Stankovic A., Panteley E. A robust globally convergent position observer for the permanent magnet synchronous motor. Automatica, 2015, vol. 61, pp. 47–54. doi: 10.1016/j.automatica.2015.07.032
12.     Aranovskiy S., Bobtsov A., Ortega R., Pyrkin A. Performance enhancement of parameter estimators via dynamic regressor extension and mixing. IEEE Transactions on Automatic Control, 2017, vol. 62, no. 7, pp. 3546–3550. doi: 10.1109/TAC.2016.2614889
13.     Genduso F., Miceli R., Rando C., Galluzzo G.R. Back EMF sensorless-control algorithm for high-dynamic performance PMSM. IEEE Transactions on Industrial Electronics, 2010, vol. 57, no. 6, pp. 2092–2100. doi: 10.1109/TIE.2009.2034182
14.     Ortega R., Praly L., Astolfi A., Lee J., Nam K. Estimation of rotor position and speed of permanent magnet synchronous motors with guaranteed stability. IEEE Transactions on Control Systems Technology, 2011, vol. 19, no. 3, pp. 601–614. doi: 10.1109/TCST.2010.2047396
15.     DM2020 Data Manual. MOOG Italiana S.r.l. Casella, Italy, 2011.
16.     Fastact Servo Motors Data Sheets. Vickers Electrics. Genoa, Italy, 1994.
17.     Pyrkin A., Vedyakov A., Ortega R., Bobtsov A. A robust adaptive flux observer for a class of electromechanical systems. arXiv preprint, arXiv:1711.02737, 2017.
18.     Shin M.H., Hyun D.S., Cho S.B., Choe S.Y. An improved stator flux estimation for speed sensorless stator flux orientation control of induction motors. IEEE Transactions on Industrial Electronics, 2000, vol. 15, no. 2, pp. 312–318. doi: 10.1109/63.838104


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2018 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика