INFORMATION SECURITY ASSESSMENT FOR MULTI-AGENT ROBOTIC SYSTEM UNDER THE INFORMATION IMPACT

I. S. Lebedev, T. V. Zikratova, D. P. Shabanov, V. V. Chistov


Read the full article 
Article in Russian


Abstract

The paper deals with the features of information security guaranteeing of the multi-agent robotic system with self-organizing behavior. The main attention is paid to the possibility of implementing information security threats on the level of interaction between the individual elements. The definitions “information impact” and “disorganization” are introduced for multi-agent robotic system. As a criterion for the system safety state assessment, probability is selected of number of items available at time t for required task execution of multi-agent robotic system, not suffering from the effects of the information impact. A method for estimating the probability of the multi-agent robotic system being in a safe state is proposed. The method is based on mathematical apparatus of Markov chains. Its distinction is the usage of functional dependencies for intensity information impact. The method gives the possibility to identify required characteristics of the individual elements in the early stages of development. Graphs of probability for secure system state of group of elements at different intensities of information impact by intruder and intensities are given, characterizing software and hardware capabilities of element output from the unsafe condition. The system behavior is modeled in the dynamics for different functional dependencies of the information impact intensity. An example of group consisting of four identical elements staying in a safe condition and attacking by three disorganizing elements is shown. Technique of obtaining numerical values for the intensities of information impact at successive instants is revealed.


Keywords: information security, robotic systems, self-organizing behavior, information impact, vulnerability

References
1.     Luo R.C., Chou Y.T., Liao C.T., Lai C.C., Tsai A.C. NCCU security warrior: An intelligent security robot system. IECON Proceedings (Industrial Electronics Conference). Taipei, Taiwan, 2007, art. no. 4460380, pp. 2960–2965. doi: 10.1109/IECON.2007.4460380
2.     Flann N.S., Moore K.L., Ma L. A small mobile robot for security and inspection operations. Control Engineering Practice, 2002, vol. 10, no. 11, pp. 1265–1270.
3.     Peters J.F. Approximation spaces for hierarchical intelligent behavioral system models. Advances in Soft Computing, 2005, no. 28, pp. 13–30.
4.     Krautsevich L.,  Lazouski A.,  Martinelli F., Yautsiukhin A. Risk-aware usage decision making in highly dynamic systems. Proc. of the  5th International Conference on Internet Monitoring and Protection, ICIMP 2010.Barcelona, Spain, 2010, art. no. 5476893, pp. 29–34. doi: 10.1109/ICIMP.2010.13
5.     Prabhakar M., Singh J.N., Mahadevan G. Nash equilibrium and Marcov chains to enhance game theoretic approach for vanet security. International Conference on Advances in Computing, ICAdC 2012. Bangalore, Karnataka, India, 2013, vol. 174 AISC, pp. 191–199. doi:10.1007/978-81-322-0740-5_24
6.     Wyglinski A.M., Huang X., Padir T., Lai L., Eisenbarth T.R., Venkatasubramanian K. Security of autonomous systems employing embedded computing and sensors. IEEE Micro, 2013, vol. 33, no. 1, art. no. 6504448, pp. 80–86.
7.     Zikratov I.A., Kozlova E.V., Zikratova T.V. Analiz uyazvimostei robototekhnicheskikh kompleksov s roevym intellektom [Vulnerability analysis of robotic systems with swarm intelligence]. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2013, no. 5 (87), pp. 149–154.
8.     Koval E.N., Lebedev I.S. Obshchaya model' bezopasnosti robototekhnicheskikh sistem [General model of robotic systems information security]. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2013, no. 4 (86), pp. 153–154.
9.     Dey G.K., Hossen R., Noor M.S., Ahmmed K.T. Distance controlled rescue and security mobile robot. Proc. of the International Conference on Informatics, Electronics and Vision, ICIEV 2013. Dhaka, Bangladesh, 2013, art. no. 6572602, pp. 1–6. doi: 10.1109/ICIEV.2013.6572602
10.  Komov S.A. et. al. Terminy i opredeleniya v oblasti informatsionnoi bezopasnosti [Terms and definitions in the field of information security]. Мoscow, AS-Trast Publ., 2009, 304 p.
11.  Mondada F., Gambardella L.M., Floreano D., Nolfi S., Deneubourg J.-L., Dorigo M. The cooperation of swarm-bots: Physical interactions in collective robotics. IEEE Robotics & Automation Magazine, 2005, vol. 12, no. 2, pp. 21–28.
12.  Ventsel’ E.S., Ovcharov L.A. Teoriya sluchainykh protsessov i ee inzhenernye prilozheniya [Theory of stochastic processes and its application to engineering]. Moscow, Vysshaya Shkola Publ., 2000, 383 p.
13.  GOST R 51901.15-2005 (MEK 61165:1995) Menedzhment riska. Primenenie markovskikh metodov.[State Standard 51901.15-2005 (IEC 61165:1995). Risk management. Application of Markov techniques]. Мoscow, Standartinform Publ., 2005. 20 p. (In Russian)
14.  Sridhar P., Sheikh-Bahaei S., Xia S., Jamshidi Mo. Multi agent simulation using discrete event and soft-computing methodologies. Proc. of the IEEE International Conference on Systems, Man and Cybernetics, 2003, no. 2, pp. 1711–1716.
15.  Kirikova E.P., Pavlovsky V.E. Modelirovanie upravlyaemogo adaptivnogo povedeniya gomogennoi gruppy robotov [Modeling of controlled adaptive behavior of robots homogeneous group]. Iskusstvennyi intellect[Artificial intelligence], 2002, no. 4, pp. 596–605. (In Russ.)
Copyright 2001-2017 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика