Y. A. Kapitanyuk, D. A. Khvostov, S. A. Chepinsky

Read the full article 
Article in Russian


The paper deals with the problem of dynamic tracking of an external movable object. These problems arise when designing tracking control systems for unmanned aircrafts following ground movable objects. A dynamic model of a solid body in three-dimensional space is selected as a control object model. An external object is described by the kinematic model of a solid body on the plane. Smooth trajectory is defined as an implicit curve associated with an external movable object. The desired height of movement is selected separately. Relative dynamics of the plant and an external movable object is considered for the synthesis of control algorithm, and methods of differential geometric transformation of the original model to the task-oriented coordinate system are applied. The original problem is formulated in terms of a longitudinal motion and two orthogonal deviations after transformation. The main results are represented by task-oriented model of spatial movement and the corresponding nonlinear control algorithms. An example of solid body motion along a circular trajectory with respect to a given rectilinear motion of an external object is given for the illustration of the proposed method performance.

Keywords: trajectory control, motion control, nonlinear control

1.     Oliveira T., Encarnacao P., Aguiar A.P. Moving path following for autonomous robotic vehicles. Proc. of 12th European Control Conference, ECC 2013. Zurich, Switzerland, 2013, art. no.  6669459, pp. 3320–3325.
2.     Oliveira T., Encarnacao P. Ground target tracking control system for unmanned aerial vehicles. Journal of Intelligent and Robotic  Systems: Theory and Applications, 2013, vol. 69, pp. 373–387. doi:  10.1007/s10846-012-9719-0
3.     Burdakov S.F., Miroshnik I.V., Stel’makov R.E. Sistemy upravleniya dvizheniem kolesnykh robotov [Motion control systems of wheeled robots].  St. Petersburg, Nauka Publ., 2001, 232 p.
4.     Miroshnik I.V., Nikiforov V.O., Fradkov A.L. Nelineinoe i adaptivnoe upravlenie slozhnymi dinamicheskimi sistemami [Nonlinear and adaptive control of complex dynamic systems]. St. Petersburg, Nauka Publ., 2000, 549 p.
5.     Bushuev A.B., Isaeva E.G., Morozov S.N., Chepinskiy S.A. Upravlenie traektornym dvizheniem mnogokanal’nykh dinamicheskikh system [Control over trajectory motion of multichannel dynamic system]. Izv. vuzov. Priborostroenie, 2009, vol. 52, no. 11, pp. 50–56.
6.     Kapitanyuk Yu.A., Chepinskiy S.A. Upravlenie mobil’nym robotom po zadannoi kusochno-gladkoi traektorii [Control of the mobile robot motion along a predetermined piecewise smooth path]. Gyroscopy and Navigation, 2013, no. 2, pp. 42–52.
7.     Kapitanyuk Yu.A., Chepinskiy S.A. Zadacha upravleniya mnogokanal’noi dinamicheskoi sistemoi po kusochno-gladkoi traektorii [Task of control for multichannel dynamic system over piecewise smooth trajectory]. Izv. vuzov. Priborostroenie, 2013, vol. 56, no. 4, pp. 65–70.
8.     Miroshnik I.V. Soglasovannoe upravlenie mnogokanal’nymi sistemami [Matched control of multi-channel systems]. Leningrad, EnergoatomizdatPubl., 1990, 128 p.
9.     Miroshnik I.V., Chepinskiy S.A. Upravlenie mnogozvennymi kinematicheskimi mekhanizmami [Control of multilink kinematic mechanisms]. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2001, no. 3 (3), pp. 144–149.
10.  Chepinskiy S.A., Miroshnik I.V. Traektornoe upravlenie kinematicheskimi mekhanizmami netrivial’noi konstruktsii [Kinematic trajectory control mechanisms with nontrivial design].  Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2004, no. 3 (14), pp. 4–10.
11.  Kapitanyuk Yu.A., Chepinskiy S.A. Traektornoe upravlenie mobil'nym robotom v izmenyayushcheisya srede [Trajectory control of mobile robot in a changing environment]. Materialy ХIV Konferentsii molodykh uchenykh “Navigatsiya i upravlenie dvizheniem”[Proc. of ХIV Conference of young scientists “Navigation and motion control”]. St. Petersburg, 2012, pp. 506–512.
12.  Bobtsov A.A., Kapitanyuk Yu.A., Kapitonov A.A., Kolyubin S.A., Pyrkin A.A., Chepinskiy S.A., Shavetov S.V. Tekhnologiya Lego Mindstorms NXT v obuchenii studentov osnovam adaptivnogo upravleniya [Lego Mindstorms NXT for teaching the principles of adaptive control theory to students]. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2011, no. 1 (71), pp. 103–108.
Copyright 2001-2017 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.