Y. A. Kapitanyuk, A. A. Kapitonov, S. A. Chepinsky

Read the full article 
Article in Russian


The article deals with a trajectory control system development for the omnidirectional mobile robot. This kind of robots gives the possibility to control separately each degree of freedom due to special design of the wheels, which greatly facilitates the solution of the spatial control tasks and makes it possible to focus directly on the development of algorithms. Control law synthesis is based on kinematic model of a solid body on a plane. Desired trajectory is defined as a smooth implicit function in a fixed coordinate system. Procedure of control design is represented by using a differential-geometric method of nonlinear transformation of the original model to the task-oriented form, which describes the longitudinal motion along a trajectory and orthogonal deviation. Proportional controllers with direct compensation of nonlinear terms are synthesized for the transformed model. Main results are represented by nonlinear control algorithms and experimental data. Practical implementation of considered control laws for the Robotino mobile robot by Festo Didactics Company is done for illustration of this approach workability. The cases of straight line motion and movement along a circle are represented as desirable trajectories, and the majority of practical tasks for mobile robots control can be implemented by their combination.

Keywords: trajectory control, mobile robot, nonlinear transformation of models

1.     Aguiar A.P., Hespanha J.P., Kokotovic P.V. Path-following for nonminimum phase systems removes performance limitations. IEEE Transactions on Automatic Control, 2005, vol. 50, no. 2, pp. 234–239. doi: 10.1109/TAC.2004.841924
2.     Nielsen C., Fulford C., Maggiore M. Path following using transverse feedback linearization: Application to a maglev positioning system. Proceedings of the American Control Conference, ACC '09. St. Louis, USA, 2009, pp. 3045–3050. doi: 10.1109/ACC.2009.5159998
3.     Breivik M., Fossen T.I. Principles of guidance-based path following in 2D and 3D. Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference, CDC-ECC '05. Seville, Spain, 2005, vol. 2005, pp. 627–634. doi: 10.1109/CDC.2005.1582226
4.     Lee T., Leok M., McClamroch N.H. Geometric tracking control of a quadrotor UAV on SE(3). Proceedings of the IEEE Conference on Decision and Control. Atlanta, USA,2010, pp. 5420–5425. doi: 10.1109/CDC.2010.5717652
5.     Burdakov S.F., Miroshnik I.V., Stel’makov R.E. Sistemy upravleniya dvizheniem kolesnykh robotov [Motion control systems of wheeled robots]. St. Petersburg, Nauka Publ., 2001, 232 p.
6.     Miroshnik I.V. Soglasovannoe upravlenie mnogokanal’nymi sistemami [Coordinated control of multi-channel systems]. Leningrad, Energoatomizdat Publ., 1990, 128 p.
7.     Miroshnik I.V., Nikiforov V.O., Fradkov A.L. Nelineinoe i adaptivnoe upravlenie slozhnymi dinamicheskimi sistemami [Nonlinear and adaptive control of complex dynamic systems]. St. Petersburg, Nauka Publ., 2000, 549 p.
8.     Miroshnik I.V., Chepinskiy S.A. Upravlenie mnogozvennymi kinematicheskimi mekhanizmami [Control of multilink kinematic mechanisms]. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2001, no. 3 (3), pp. 144–149.
9.     Chepinskiy S.A., Miroshnik I.V. Traektornoe upravlenie kinematicheskimi mekhanizmami netrivial’noi konstruktsii [Kinematic trajectory control mechanisms with nontrivial design]. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2004, no. 3 (14), pp. 4–10.
10.  Kapitanyuk Yu.A., Chepinskiy S.A. Upravlenie mobil’nym robotom po zadannoi kusochno-gladkoi traektorii [Control of the mobile robot motion along a predetermined piecewise smooth path]. Gyroscopy and Navigation, 2013, no. 2, pp. 42–52.
11.  Kapitanyuk Yu.A., Chepinskiy S.A. Zadacha upravleniya mnogokanal’noi dinamicheskoi sistemoi po kusochno-gladkoi traektorii [Task of control for multichannel dynamic system over piecewise smooth trajectory]. Izv. vuzov. Priborostroenie, 2013, vol. 56, no. 4, pp. 65–70.
12.  Miroshnik I.V., Chepinsky S.A. Trajectory control of underactuated mechanisms. Proc. of the 2nd IFAC Conference on Mechatronic Systems. Berkeley, 2002, pp. 959–1004.
13.  Miroshnik I.V., Chepinsky S.A. Trajectory motion control of underactuated manipulators. Prepr. 7th IFAC Symposium on Robot Control. Wroclaw, Poland, 2003, pp. 105–110.
14.  Miroshnik I.V., Nikiforov V.O. Trajectory motion control and coordination of multilink robots. Prepr. 13th IFAC World Congress. San-Francisco, 1996, vol. A, pp. 361–366.
15.  Canudas de Wit C., Siciliano B., Bastin G. Theory of robot control. Springer-Verlag, London, 1996, 550 p. doi: 10.1002/acs.4480040603
16.  Isidori A. Nonlinear control systems. 2nd ed. Springer-Verlag, Berlin, 1995, 549 p.
17.  Kapitanyuk Yu.A., Chepinskiy S.A. Traektornoe upravlenie mobil'nym robotom v izmenyayushcheisya srede [Trajectory control of mobile robot in a changing environment]. Materialy ХIV Konferentsii molodykh uchenykh “Navigatsiya i upravlenie dvizheniem”[Proc. of ХIV Conference of young scientists “Navigation and motion control”]. St. Petersburg, 2012, pp. 506–512.
18.  Bushuev A.B., Isaeva E.G., Morozov S.N., Chepinskiy S.A. Upravlenie traektornym dvizheniem mnogokanal’nykh dinamicheskikh system [Control over trajectory motion of multichannel dynamic system]. Izv. vuzov. Priborostroenie, 2009, vol. 52, no. 11, pp. 50–56.
19.  Bobtsov A.A., Kapitanyuk Yu.A., Kapitonov A.A., Kolyubin S.A., Pyrkin A.A., Chepinskiy S.A., Shavetov S.V. Tekhnologiya Lego Mindstorms NXT v obuchenii studentov osnovam adaptivnogo upravleniya [Lego Mindstorms NXT for teaching the principles of adaptive control theory to students]. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2011, no. 1 (71), pp. 103–108.
Copyright 2001-2017 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.