doi: 10.17586/2226-1494-2022-22-3-501-508


Synthesis and implementation of λ-approach of slide control in heat-consumption system

A. A. Shilin, V. G. Bukreev, F. V. Perevoshchikov


Read the full article  ';
Article in English

For citation:
Shilin A.A., Bukreev V.G., Perevoshchikov F.V. Synthesis and implementation of λ-approach of slide control in heat-consumption system. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2022, vol. 22, no. 3, pp. 501–508. doi: 10.17586/2226-1494-2022-22-3-501-508


Abstract
The paper proposes an essentially new approach to synthesis and implementation of dynamic objects with three-position relay control. The approach consists in organization of differentiation procedure on the relay element involved into feedback. We considered synthesis of the relay element feedback in tasks of robust and time optimal control of heat-consumption systems. To demonstrate the effectiveness of the proposed approach, a comparative assessment of the results of modeling heat consumption systems with three-position relay control and a traditional linear–quadratic regulator is presented. We attached transient processes plots of active heat-consumption systems which confirm the effectiveness of the synthesized relay control.

Keywords: heat-consumption systems, lambda-regulator, sliding mode, time optimal control, three-position relay control

References
  1. Poznyak A.S. Sliding mode control in stochastic continuos-time systems: μ-zone MS-convergence. IEEE Transactions on Automatic Control, 2017, vol. 62, no. 2, pp. 863–868. https://doi.org/10.1109/TAC.2016.2557759
  2. Alibeji N., Sharma N.A PID-type robust input delay compensation methodfor uncertain Euler-Lagrange systems. IEEE Transactions on Control Systems Technology, 2017, vol. 25, no. 6, pp. 2235–2242. https://doi.org/10.1109/TCST.2016.2634503
  3. Guo X., Ren H.P.Robust variable structure control for three-phase PWM converter.Zidonghua Xuebao/Acta Automatica Sinica, 2015, vol. 41, no. 3, pp. 601–610. (in Chinese). https://doi.org/10.16383/j.aas.2015.c140421
  4. Zhu Q.D., Wang T.An improved design scheme of variable structure control for discrete-time systems.Zidonghua Xuebao/Acta Automatica Sinica, 2010, vol. 6,no. 6, pp. 885–889. (in Chinese). https://doi.org/10.3724/SP.J.1004.2010.00885
  5. Parra-Vega V., Fierro-Rojas J.D.Sliding PIDuncalibrated visual servoingfor finite-time tracking of planar robots.Proc. of the 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422),2003,vol. 3, pp. 3042–3047. https://doi.org/10.1109/ROBOT.2003.1242058
  6. Choi H.H.LMI-based sliding surface design for integral sliding mode control of mismatched uncertain systems.IEEE Transactions on AutomaticControl, 2007, vol. 52,no. 4, pp. 736–742. https://doi.org/10.1109/TAC.2007.894543
  7. Huang Y. J., Kuo T.C., Chang S.H.Adaptive sliding-mode control fornonlinear systems with uncertain parameters.IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 2008,vol. 38,no. 2, pp. 534–539.https://doi.org/10.1109/TSMCB.2007.910740
  8. Abdulgalil F., Siguerdidjane H. PID based on sliding mode control forrotary drilling system. Proc. of the EUROCON 2005 - The International Conferenceon "Computer as a Tool", 2005, vol. 1, pp. 262–265. https://doi.org/10.1109/EURCON.2005.1629911
  9. Utkin V. I.Sliding Modes in Control and Optimization. Berlin, Germany,Springer,1992, 299 p.
  10. Li X.B., Ma L., Ding S.H. A new second-order sliding mode control andits application to inverted pendulum.Zidonghua Xuebao/Acta AutomaticaSinica, 2015, vol. 41, no. 1, pp. 193–202. (in Chinese). https://doi.org/10.16383/j.aas.2015.c140263
  11. Li Y., XuQ.Adaptive sliding mode control with perturbation estimationand PIDsliding surface for motion tracking of a piezo-driven micromanipulator.IEEE Transactions on Control Systems Technology, 2010,vol. 18, no. 4, pp. 798–810. https://doi.org/10.1109/TCST.2009.2028878
  12. Mu C.X., Yu X.H., Sun C.Y.Phase trajectory and transient analysisfor nonsingular terminal sliding modecontrol systems.Zidonghua Xuebao/Acta Automatica Sinica, 2013, vol. 39, no. 6,pp. 902–908. (in Chinese). https://doi.org/10.3724/SP.J.1004.2013.00902
  13. Bartolini G., Pydynowski P. An improved, chattering free, V.S.C. scheme foruncertain dynamical systems. IEEE Transactions on Automatic Control, 1996,vol. 41, no. 8, pp. 1220–1226. https://doi.org/10.1109/9.533691
  14. Bartolini G., Ferrara A., Usai E.Chattering avoidance by second-ordersliding mode control. IEEE Transactions on Automatic Control, 1998, vol. 43, no. 2, pp. 241–246. https://doi.org/10.1109/9.661074
  15. Bartolini G., Ferrara A., Usai E., Utkin V.I. On multi-input chattering-free second-order sliding mode control. IEEE Transactions on Automatic Control, 2000, vol. 45, no. 9, pp. 1711–1717. https://doi.org/10.1109/9.880629
  16. Zhang Y., Ma G.F., Guo Y.N., Zeng T.Y.A multi power reaching law ofsliding mode control design and analysis. Zidonghua Xuebao/Acta Automatica Sinica, 2016,vol. 42, no. 3,pp. 466–472. (in Chinese). https://doi.org/10.16383/j.aas.2016.c150377
  17. Kim N., Cha S., Peng H. Optimal control of hybrid electric vehicles basedon Pontryagin's minimum principle. IEEE Transactions on Control SystemsTechnology, 2011, vol. 19, no. 5, pp. 1279–1287. https://doi.org/10.1109/TCST.2010.2061232
  18. Klyuev A.S., Kolesnikov A.A.Optimization of Automatic Control Systems by Speed. Moscow,Energoizdat, 1982, 239 p. (in Russian)
  19. Kirk D.D. Optimal Control Theory. An Introduction. Englewood Cliffs, NJ, Prentice-Hall, 1970, 472 p.
  20. Li Y., Wang Z., Zhu L. Adaptive neural network PID sliding mode dynamiccontrol of nonholonomic mobile robot. Proc. of the IEEE InternationalConference on Information and Automation, 2010, pp. 753–757. https://doi.org/10.1109/ICINFA.2010.5512467
  21. Khalil H.K. Nonlinear Systems. 3nd ed., Upper Saddle River, NJ, Prentice Hall, 2002, 750 p.
  22. Liu T., Liu H.P. Quasi-sliding-mode control based on discrete reachinglaw with dead zone. Zidonghua Xuebao/Acta Automatica Sinica, 2011, vol. 37, no. 6, pp. 760–766. (in Chinese). https://doi.org/10.3724/SP.J.1004.2011.00760
  23. Shilin A.A., Bukreev V.G.The reduction of the multidimensional model of thenonlinear heat exchange system with delay.Communications in Computerand Information Science, 2014, vol. 487, pp. 387–396. https://doi.org/10.1007/978-3-319-13671-4_44
  24. Shilin A.A., Bukreev V.G., Prohorov S. Pressure pump power control in theprimary circuit of the heat exchange system.MATEC Web of Conferences, 2016, vol. 91, pp. 01043. https://doi.org/10.1051/matecconf/20179101043.
  25. Savrasov F.V., Prokhorov S.V., Shilin A.A. The computer simulation of hoar-frost's clearing process in the air recuperation system. Journal of Physics:Conference Series, 2017, vol. 803, no. 1, pp. 012134. https://doi.org/10.1088/1742-6596/803/1/012134


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2024 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика