Menu
Publications
2025
2024
2023
2022
2021
2020
2019
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
2002
2001
Editor-in-Chief

Nikiforov
Vladimir O.
D.Sc., Prof.
Partners
doi: 10.17586/2226-1494-2024-24-6-936-942
Spectral-luminescent properties of silver clusters Ag1–5 in the ion-exchange layer of silicate glass
Read the full article

Article in Russian
For citation:
Abstract
For citation:
Pesnyakov V.V., Marasanov D.V., Evstropiev S.K., Nikonorov N.V. Spectral-luminescent properties of silver clusters Ag1-5 in the ion-exchange layer of silicate glass. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2024, vol. 24, no. 6, pp. 936–942 (in Russian). doi: 10.17586/2226-1494-2024-24-6-936-942
Abstract
This work demonstrates for the first time the selectivity of silver molecular clusters luminescence in silicate glass formed by the ion exchange method from a salt melt containing 0.1 mol.% silver nitrate (AgNO3) and 99.9 mol.% sodium nitrate (NaNO3). Commercial silicate microscope slides of the following system were used: SiO2-Na2O-K2O-CaO-MgO-Al2O3 with Fe2O3-SO3 impurities. Molecular clusters were obtained by low-temperature ion exchange in a melt of 0.1 % AgNO3/99.9 % NaNO3 mol.% for 10 and 15 min at 320 °C. The luminescent properties of silver molecular clusters in the ion-exchange layer of microscope slides were studied. Bands of silver clusters of different sizes (Ag1-5) were found in the luminescence spectra. In this case, clusters Ag1-3 are excited by shorter wavelengths, and clusters Ag4-5 only by far ultraviolet and visible radiation up to 500 nm. In the process of ion exchange lasting up to 10 minutes, the appearance of luminescence selectivity was revealed, which occurs due to the presence of a low concentration of silver clusters of different sizes Ag1-5 in the ion-exchange layer. The obtained results can be used in the development of a photosensitive element for a selective ultraviolet radiation detector.
Keywords: silver clusters, ion exchange, silicate glass, luminescence, selectivity
Acknowledgements. The work was supported by the Russian Science Foundation (Project No. 20-19-00559).
References
Acknowledgements. The work was supported by the Russian Science Foundation (Project No. 20-19-00559).
References
- Gy R. Ion exchange for glass strengthening. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2008, vol. 149, no. 2, pp. 159–165. https://doi.org/10.1016/j.mseb.2007.11.029
- Guldiren D., Erdem İ., Aydin S. Influence of silver and potassium ion exchange on physical and mechanical properties of soda lime glass. Journal of Non-Crystalline Solids, 2016, vol. 441, pp. 1–9. https://doi.org/10.1016/j.jnoncrysol.2016.03.007
- Jiang X., Lin X., Li C., Pang M., Liu L., Yu Y., Wang Z., Luo Y., Lu A., Bai Z. Effect of potassium and silver ion-exchange on the strengthening effect and properties of aluminosilicate glass. Ceramics International, 2023, vol. 49, no. 19, pp. 31351–31363. https://doi.org/10.1016/j.ceramint.2023.07.083
- Fares H., Santos S.N.C., Santos M.V., Franco D.F., Souza A.E., Manzani D., Mendonça C.R., Nalin M. Highly luminescent silver nanocluster-doped fluorophosphate glasses for microfabrication of 3D waveguides. RSC Advances, 2017, vol. 7, no. 88, pp. 55935–55944. https://doi.org/10.1039/c7ra11792b
- de Castro T., Fares H., Khalil A.A., Laberdesque R., Petit Y., Strutinski C., Danto S., Jubera V., Ribeiro S.J.L., Nalin M., Cardinal T., Canioni L. Femtosecond laser micro-patterning of optical properties and functionalities in novel photosensitive silver-containing fluorophosphate glasses. Journal of Non-Crystalline Solids, 2019, vol. 517, pp. 51–56. https://doi.org/10.1016/j.jnoncrysol.2019.04.012
- Broquin J.-E., Honkanen S. Integrated photonics on glass: A review of the ion-exchange technology achievements. Applied Sciences, 2021, vol. 11, no. 10, pp. 4472. https://doi.org/10.3390/app11104472
- Gut K., Blahut M. Influence of ion exchange process parameters on broadband differential interference. Sensors, 2023, vol. 23, no. 13, pp. 6092. https://doi.org/10.3390/s23136092
- Dong X., Si Y., Yang J., Zhang C., Han Z., Luo P., Wang Z., Zang S., Mak T.C.W. Ligand engineering to achieve enhanced ratiometric oxygen sensing in a silver cluster-based metal-organic framework. Nature Communications, 2020, vol. 11, no. 1, pp. 3678. https://doi.org/10.1038/s41467-020-17200-w
- Qian S., Wang Z., Zuo Z., Wang X., Wang Q., Yuan X. Engineering luminescent metal nanoclusters for sensing applications. Coordination Chemistry Reviews, 2022, vol. 451, pp. 214268. https://doi.org/10.1016/j.ccr.2021.214268
- Yanic M.C.Ö., Sarıgüzel M., Öztürk Y., Günay E. An investigation of nanometal-glass hybrid nanocomposites produced by ion exchange and annealing process. Journal of the Australian Ceramic Society, 2017, vol. 53, no. 1, pp. 193–206. https://doi.org/10.1007/s41779-017-0025-y
- Zhao J., Yang Z., Yu C., Qiu J., Song Z. Preparation of ultra-small molecule-like Ag nano-clusters in silicate glass based on ion-exchange process: Energy transfer investigation from molecule-like Ag nano-clusters to Eu3+ ions. Chemical Engineering Journal, 2018, vol. 341, pp. 175–186. https://doi.org/10.1016/j.cej.2018.02.028
- Li L., Yang Y., Zhou D., Yang Z., Xu X., Qiu J. Influence of the Eu2+ on the silver aggregates formation in Ag+–Na+ ion-exchanged Eu3+-doped sodium–aluminosilicate glasses. Journal of the American Ceramic Society, 2014, vol. 97, no. 4, pp. 1110–1114. https://doi.org/10.1111/jace.12745
- Li L., Yang Y., Zhou D., Yang Z., Xu X., Qiu J. Investigation of the role of silver species on spectroscopic features of Sm3+-activated sodium–aluminosilicate glasses via Ag+-Na+ ion exchange. Journal of Applied Physics, 2013, vol. 113, no. 19, pp. 193103. https://doi.org/10.1063/1.4807313
- Samuel A.B., Ravi Kanth Kumar V.V. Role of silver on the photoluminescence and structural studies of sodium antimony zinc borate glass. Journal of Materials Science, 2023, vol. 58, no. 26, pp. 10660–10676. https://doi.org/10.1007/s10853-023-08684-0
- Agafonova D.S., Egorov V.I., Ignat’ev A.I., Sidorov A.I. The effect of temperature on the luminescence of molecular clusters of silver in photothermorefractive glasses. Journal of Optical Technology, 2013, vol. 80, no. 8, pp. 506–509. https://doi.org/10.1364/JOT.80.000506
- Chernakov D.I., Sidorov A.I. UV radiation dosimeter with double spectral conversion. Optics and Spectroscopy, 2017, vol. 122, no. 3, pp. 416–419. https://doi.org/10.1134/S0030400X17030067
- Liu L., Corma A. Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chemical Reviews, 2018, vol. 118, no. 10, pp. 4981–5079. https://doi.org/10.1021/acs.chemrev.7b00776
- Manikandan P., Manikandan D., Manikandan E., Ferdinand C.A. Surface enhanced Raman scattering (SERS) of silver ions embedded nanocomposite glass. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2014, vol. 124, pp. 203–207. https://doi.org/10.1016/j.saa.2014.01.033
- Eremina O.E., Sergeeva E.A., Ferree M.V., Shekhovtsova T.N., Goodilin E.A., Veselova I.A. Dual-purpose SERS sensor for selective determination of polycyclic aromatic compounds via electron donor−acceptor traps. ACS Sensors, 2021, vol. 6, no. 3, pp. 1057–1066. https://doi.org/10.1021/acssensors.0c02294
- Velázquez J.J., Tikhomirov V.K., Chibotaru L.F., Cuong N.T., Kuznetsov A.S., Rodríguez V.D., Nguyen M.T., Moshchalkov V.V. Energy level diagram and kinetics of luminescence of Ag nanoclusters dispersed in a glass host. Optics Express, 2012, vol. 20, no. 12, pp. 13582–13591. https://doi.org/10.1364/OE.20.013582
- Amaro A.A., da Silva Mattos G.R., de Morais Nishimura M.V., Dipold J., Wetter N.U., Kassab L.R.P. Silver nanoclusters tunable visible emission and energy transfer to Yb3+ ions in co-doped GeO2-PbO glasses for photonic applications. Nanomaterials, 2023, vol. 13, no. 7, pp. 1177. https://doi.org/10.3390/nano13071177
- Stolyarchuk M.V., Sidorov A.I. Electronic absorption spectra of neutral and charged silver molecular clusters. Optics and Spectroscopy, 2018, vol. 125, no. 3, pp. 305–310. https://doi.org/10.1134/S0030400X18090229