THE RECURRENT ALGORITHM FOR INTERFEROMETRIC SIGNALS PROCESSING BASED ON MULTI-CLOUD PREDICTION MODEL

M. A. Volynsky, I. P. Gurov, P. S. Skakov


Read the full article  ';
Article in Russian


Abstract

The paper deals with modification of the recurrent processing algorithm for discrete sequence of interferometric signal samples. The algorithm is based on subsequent reference signal prediction at specifying a set (“cloud”) of values for signal parameters vector by Monte Carlo method, comparison with the measured signal value and usage of the residual for enhancing the values of signal parameters at each discretization step. The concept of multi-cloud prediction model is used in the proposed modified algorithm. A set of normally distributed clouds is created with expectation values selected on the base of criterion of minimum residual between prediction and observation values. Experimental testing of the proposed method applied to estimation of fringe initial phase in the phase shifting interferometry has been conducted. The estimate variance of the signal reconstructed according to estimated initial phase from initial signal does not exceed 2% of the maximum signal value. It has been shown that the proposed algorithm application makes it possible to avoid the 2π-ambiguity and ensure sustainable recovery of interference fringes phase of a complicated type without involving a priori information about interference fringe phase distribution. The usage of the proposed algorithm applied to estimation of interferometric signals parameters gives the possibility for improving the filter stability with respect to influence of random noise and decreasing requirements for accuracy of a priori filtration parameters setting as compared with conventional (single-cloud) implementation of the sequential Monte Carlo method.


Keywords: interferometric signals analysis, Bayesian filter, sequential Monte Carlo method, multi-cloud prediction

References
1.     Malacara D. Optical Shop Testing. 2nd ed. NY, John Wiley & Sons, Inc., 1992, 792 p.
2.     Hariharan P. Optical interferometry. Reports on Progress in Physics, 1991, vol. 54, no. 3, pp. 339–390. doi: 10.1088/0034-4885/54/3/001
3.     Huntley J.M. Automated fringe pattern analysis in experimental mechanics: a review. Journal of Strain Analysis for Engineering Design, 1998, vol. 33, no. 2, pp. 105–125.
4.     Vasiliev V.N., Gurov I.P. Komp'yuternaya obrabotka signalov v prilozhenii k interferometricheskim sistemam [Computer processing of signals in the application to the interferometric system]. St. Petersburg, BHV Publ., 1998, 240 p.
5.     Gurov I., Ermolaeva E., Zakharov A. Analysis of low-coherence interference fringes by the Kalman filtering method. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2004, vol. 21, no. 2, pp. 242–251. doi: 10.1364/JOSAA.21.000242
6.     Gurov I., Volynsky M. Interference fringe analysis based on recurrence computational algorithms. Optics and Lasers in Engineering, 2012, vol. 50, no. 4, pp. 514–521. doi: 10.1016/j.optlaseng.2011.07.015
7.     Zakharov A.S. Nelineinyi analiz stokhasticheskikh parametrov interferentsionnykh system. Diss. kand. tekhn. nauk [Nonlinear analysis of stochastic parameters interference systems. Candidate’s eng. sci.thesis]. St. Petersburg, SPbSU ITMO, 2005, 157 p.
8.     Volynsky M.A. Rekurrentnye algoritmy obrabotki dannykh v opticheskoi kogerentnoi tomografii. Diss. kand. tekhn. nauk [Recurrent algorithms of data processing in optical coherence tomography. Candidate’s eng. sci. thesis]. St. Petersburg, NRUITMO, 2011, 112 p.
9.     Wan E.A., van der Merwe R. The unscented Kalman filter. In Kalman Filtering and Neural Networks (ed. S. Haykin). NY: John Wiley & Sons, 2001, pp. 221-280. doi: 10.1002/0471221546.ch7
10.  Simon D. Optimal state estimation: Kalman, H∞, and Nonlinear Approaches. NY: John Wiley & Sons Inc., 2006, 526 p.
11.  Doucet A., de Freitas N., Gordon N. Sequential Monte Carlo methods in practice. NY: Springer-Verlag, 2001. 583 p.
12.  Perov A.I. Statisticheskaya teoriya radiotekhnicheskikh sistem [Statistical theory of radio systems]. Moscow, Radiotekhnika Pibl., 2003, 400 p.
13.  Øksendal B.K. Stochastic Differential Equations: An Introduction with Applications. 6th ed. Berlin: Springer, 2003. 379 p.
14.  Volynsky M.A., Gurov I.P., Ermolaev P.A., Skakov P.S. Dinamicheskoe otsenivanie parametrov interferometricheskikh signalov na osnove posledovatel'nogo metoda Monte-Karlo [Dynamic parameters estimation of interferometric signals based on sequential Monte Carlo method]. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2014, no. 3 (91), pp. 18–23.
15.  Zhao W, Cao G. A real-time adaptive phase-shifting interferometry. Proceedings of SPIE - The International Society for Optical Engineering, vol. 8493, art. no. 849313. doi: 10.1117/12.929177
16.  Chen L.-C., Yeh S.-L., Tapilouw A.M., Chang J.-C. 3-D surface profilometry using simultaneous phase-shifting interferometry. Optics Communications, 2010, vol. 283, no. 18, pp. 3376–3382. doi: 10.1016/j.optcom.2010.05.001


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2024 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика