V. I. Egorov, I. V. Zvyagin, E. D. Karpenko, D. A. Klyukin, A. I. Sidorov

Read the full article  ';
Article in Russian


We present calculation results of optical properties of silver nanoparticles with dielectric shell in relation to their applications in chemical and biosensors. Absorption cross-section calculation for spherical silver nanoparticles was performed by quasi static dipole approximation. It is shown that dielectric shell thickness equal to 2-3 nm and its refraction index equal to 1,5-1,75 are optimal. Calculation results were compared to experimental data. Experimental investigation of metal-dielectric nanostructures sensitivity to external refraction index was performed. Synthesis of silver nanoparticles with dielectric shell on glass surface was performed by nanosecond laser ablation method in near-surface glass layer at 1,06 μm wavelength (Solar LQ129). Synthesis of silver nanoparticles without a shell on the glass surface with silver ions was performed using thermal treatment in wet atmosphere. Spectrophotometer Cary 500 (Varyan) was used for spectral measurements. In case of laser ablation method application, external refraction index changes from 1 (the air) to 1,33 (water) and plasmon resonance band shift for 6 nm occurs. In case of another method application at the same conditions the registered shift was equal to 13 nm. However, in the latter case the particles can be easily removed from the substrate surface. Obtained results will be useful for developing chemical and biological sensors based on plasmon resonance band shift.

Keywords: silver nanoparticle, nanostructure, metal-dielectric, plasmon resonance, biosensor, ablation

1.     KlimovV.V. Nanoplazmonika [Nanoplasmonics]. Moscow, Fizmatlit Publ., 2009, 480 p.
2.     Zayats A.V., Smolyaninov I.I., Maradudin A.A. Nano-optics of surface plasmon polaritons. Physics Reports, 2005, vol. 408, no. 3-4, pp. 131–314. doi: 10.1016/j.physrep.2004.11.001
3.     Eichelbaum M., Rademann K. Plasmonic enhancement or energy transfer? On the luminescence of gold-, silver-, and lanthanide-doped silicate glasses and its potential for light-emitting devices. Advanced Functional Materials, 2009, vol. 19, no. 13, pp. 2045–2052. doi: 10.1002/adfm.200801892
4.     Pugh V.J., SzmacinskiH., Moore W.E., Geddes C.D., Lakowicz J.R. Submicrometer spatial resolution of metal-enhanced fluorescence. Applied Spectroscopy, 2003, vol. 57, no. 12, pp. 1592–1598. doi: 10.1366/000370203322640233
5.     Chen Y., Jaakola J.J., Saynatjoki A., Tervonen A., Honkanen S. Glass-embedded silver nanoparticle patterns by masked ion-exchange process for surface-enhanced Raman scattering. Journal of Raman Spectroscopy, 2011, vol. 42, no. 5, pp. 936–940. doi: 10.1002/jrs.2784
6.     Kneipp K., Wang Y., Kneipp H., Perelman L.T., Itzkan I., Dasari R.R., Feld M.S. Single molecule detection using surface-enhanced Raman scattering (SERS). Physical Review Letters, 1997, vol. 78, no. 9, pp. 1667–1670.
7.     Silver Nanoparticles. Ed. D.P. Perez. Vukovar, Croatia: In-Tech, 2010, 342 p.
8.     Lee K.S., El-Sayed M.A. Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition. Journal of Physical Chemistry B, 2006, vol. 110, no. 39, pp. 19220–19225. doi: 10.1021/jp062536y
9.     Bohren C.F., Huffman D.R. Absorption and Scattering of Light by Small Particles. NY, John Wiley & Son, 1983.
10.  Zolotarev V.M., Morozov V.N., Smirnova E.V. Opticheskie Postoyannye Prirodnykh i Tekhnicheskikh Sred [The Optical Constants of Natural and Technical Environments]. Leningrad, Khimiya Publ., 1984, 216 p.
11.  Tervonen A., West B.R., Honkanen S. Ion-exchanged glass waveguide technology: a review. Optical Engineering, 2011, vol. 50, no. 7, art. no. 071107. doi: 10.1117/1.3559213
12.  Egorov V.I., Naschekin A.V., Sidorov A.I. Plasmonic nanostructures formation on surface of glasses using pulsed laser exposure. Proc. of VI Finn.-Russ. Photonics and Lasers Symposium, PALS'13. Kuopio, Finland, 2013, p. 13.
13.  Egorov V.I., Naschekin A.V., Nikonorov N.V., Sidorov A.I. Silver nanoparticles and films formation on the surface of silver-containing glasses by laser ablation. Proc. of International Symposium Fundamentals of Laser Assisted Micro- and Nanotechnologies, FLAMN-13. St. Petersburg, Russia, 2013, pp. 117–118.
14.  Obraztsov P.A., Nashchekin A.V., Panfilova A.V., Brunkov P.N., Nikonorov N.V., Sidorov A.I. Formation of silver nanoparticles on the silicate glass surface after ion exchange. Physics of the Solid State, 2013, vol. 55, no. 6,
pp. 1272–1278. doi: 10.1134/S1063783413060267
15.  Kaganovskii Yu., Mogilko E., Lipovskii A.A., Rosenbluh M. Formation of nanoclusters in silver-doped glasses in wet atmosphere. Journal of Physics: Conference Series, 2007, vol. 61, no. 1, pp. 508–512. doi: 10.1088/1742-6596/61/1/103

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2024 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.