TWO-LEVEL HIERARCHICAL COORDINATION QUEUING METHOD FOR TELECOMMUNICATION NETWORK NODES

M. V. Semenyaka


Read the full article  ';
Article in Russian


Abstract

The paper presents hierarchical coordination queuing method. Within the proposed method a queuing problem has been reduced to optimization problem solving that was presented as two-level hierarchical structure. The required distribution of flows and bandwidth allocation was calculated at the first level independently for each macro-queue; at the second level solutions obtained on lower level for each queue were coordinated in order to prevent probable network link overload. The method of goal coordination has been determined for multilevel structure managing, which makes it possible to define the order for consideration of queue cooperation restrictions and calculation tasks distribution between levels of hierarchy. Decisions coordination was performed by the method of Lagrange multipliers. The study of method convergence has been carried out by analytical modeling.


Keywords: queue management, goal coordination method, service quality, hierarchical structure

References
 1.     Gurov I.P. Opticheskaya kogerentnaya tomografiya: printsipy, problemy i perspektivy [Optical coherence tomography: basics, problems and prospects]. In Problemy Kogerentnoi i Nelineinoi Optiki [Problems of Coherence and Nonlinear Optics]. Eds I.P. Gurov, S.A. Kozlov. St. Petersburg, SPbSU ITMO Publ., 2004, pp. 6–30.
2.     Tomlins P.H., Wang R.K. Theory, developments and applications of optical coherence tomography.Journal of Physics D: Applied Physics,2005, vol. 38, no. 15, pp. 2519–2535.doi: 10.1088/0022-3727/38/15/002
3.     Optical Coherence Tomography. Technology and Applications. Eds. W.Drexler, J.G.Fujimoto.Berlin: Springer-Verlag, 2008. 1376 p.
4.     Dubois A., Grieve K., Moneron G., Lecaque R., Vabre L., Boccara C. Ultrahigh-resolution full-field optical coherence tomography.AppliedOptics, 2004, vol. 43, no. 10, pp. 2874–2883.doi: 10.1364/AO.43.002874
5.     Oh W.Y., Bouma B.E., Iftimia N., Yun S.H., Yelin R., Tearney G.J. Ultrahigh-resolution full-field optical coherence microscopy using InGaAs camera.OpticsExpress,2006, vol. 14, no. 2, pp. 726–735.
6.     Gurov I., Volynsky M. Interference fringe analysis based on recurrence computational algorithms. Optics and Lasers in Engineering, 2012, vol. 50, no. 4, pp. 514–521. doi: 10.1016/j.optlaseng.2011.07.015
7.     Volynskii M.A., Gurov I.P., Zakharov A.S. Dynamic analysis of the signals in optical coherent tomography by the method of nonlinear Kalman filtering. Journal of Optical Technology, 2008, vol. 75, no. 10, pp. 682–686.
8.     Gurov I., Sheynihovich D. Interferometric data analysis based on Markov nonlinear filtering methodology.Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2000, vol. 17, no.1, pp. 21–27.
9.     Volynskii M.A., Gurov I.P., Zhukova E.V.Recursion algorithms for processing video information in optical-coherence-tomography systems. Journal of Optical Technology, 2012, vol. 79, no.11, pp. 698–703.
10.  Ermolaev P.A. Dinamicheskoe otsenivanie parametrov interferometricheskikh signalov metodom rasshirennoi fil'tratsii Kalmana vtorogo poryadka [Dynamic estimation for parameters of interference signals by the second order extended Kalman filtering]. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2014, no.2 (90), pp. 17–22.
11.  Wan E.A., van der Merwe R. The unscented Kalman filter, in Kalman Filtering and Neural Networks (ed. S. Haykin). NY: John Wiley & Sons, 2001, pp. 221–280. doi: 10.1002/0471221546.ch7
12.  Volynsky M.A. Rekurrentnye Algoritmy Obrabotki Dannykh v Opticheskoi Kogerentnoi Tomografii. Diss. kand. tekhn. nauk [Recurrent Algorithms of Data Processing in Optical Coherence Tomography. Candidate’s eng. sci. thesis]. St. Petersburg, NRUITMO, 2011, 112 p.
13.  Simon D. Optimal state estimation: Kalman, H∞, and Nonlinear Approaches. NY: John Wiley & Sons Inc., 2006, 526 p.
14.  Doucet A., de Freitas N., Gordon N. Sequential Monte Carlo methods in practice. NY: Springer-Verlag, 2001. 583 p.
15.  Malacara D. Optical Shop Testing. NY: Wiley, 1978,862 p.
16.  Kolomiitsov Yu.V. Interferometry: Osnovy Inzhenernoi Teorii, Primenenie [Interferometers: Fundamentals of Engineering Theory, Application]. Leningrad, Mashinostroenie Publ., 1976, 296 p.
17.  Volynsky M.A., Gurov I.P., Ermolaev P.A., Skakov P.S.Dinamicheskoe otsenivanie parametrov interferometricheskikh signalov na osnove posledovatel'nogo metoda Monte-Karlo [Dynamic parameters estimation of interferometric signals based on sequential Monte Carlo method]. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2014, no. 3 (91), pp. 18–23.
18.  Gutsevich A.V., Monchadskii A.S., Shtakel'berg A.A. Nasekomye Dvukrylye. Komary[Insects Diptera. Mosquitoes]. Leningrad, Nauka Publ., 1970,384 p.


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2024 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика