MULTI-GRID METHOD OF CONVERGENCE SPEEDING-UP FOR THE SOLUTION OF GAS DYNAMICS PROBLEMS ON UNSTRUCTURED MESHES

K. N. Volkov


Read the full article  ';

Abstract

An approach for effective implementation of numerical methods and computational algorithms is developed to simulate flows of non-viscous and viscous compressible gas in the complex domains. The convergence speeding-up method of iterative process is discussed based on the usage of multi-grid technologies to the solution of large systems of finite difference equations. Euler and Navier-Stokes equations are quantized on structured and unstructured meshes with highresolution schemes in time and space. Multi-grid method is implemented on the basis of standard C/F splitting of variables and standard interpolation method. A specific approach is proposed to overcome the problems related to storing the matrix coefficients of different signs. A problem of flow around an airfoil is used to demonstrate the possibilities of computational tools developed. The results computed for non-viscous and viscous gas on structured and unstructured meshes are presented with the usage of various components of multi-grid technology. Comparison of computation speed and convergence factors on structured and unstructured meshes showed the economy of the developed approach and weak dependence of quality characteristics on the number of mesh points. The choice of optimal inner iterations number made it possible to decrease computation time for 10%. Obtained results can be applied while software creating for fluid dynamics problems in the complex configuration domains.


Keywords: computational fluid dynamics, unstructured mesh, multi-grid method, convergence, speeding-up

References
1.     Brandt A. Guide to multigrid development // Lecture Notes in Mathematics. 1982. V. 960. P. 220–312.
2.     Wesseling P. An introduction to mutigrid methods. Chichester: John Wiley & Sons, 1992. 152 p.
3.     Pierce N.A., Giles M.B., Jameson A., Martinelli L. Accelerating three-dimensional Navier-Stokes calculations // Proc. 13th Computational Fluid Dynamics Conference. 1997. P. 676–698.
4.     Волков К.Н. Блочное предобусловливание уравнений Эйлера и Навье-Стокса при моделировании низкоскоростных течений на неструктурированных сетках // Журнал вычислительной математики и математической физики. 2009. Т. 49. № 10. С. 1868–1884.
5.     Волков К.Н. Многосеточные технологии для решения задач газовой динамики на неструктурированных сетках // Журнал вычислительной математики и математической физики. 2010. Т. 50. № 11. С. 1938–1952.
6.     Cagnone J.S., Sermeus K., Nadarajah S.K., Laurendeau E. Implicit multigrid schemes for challenging aerodynamic simulations on block-structured grids // Computers and Fluids. 2011. V. 44. N 1. P. 314–327.
7.     Colin Y., Deniau H., Boussuge J.-F. A robust low speed preconditioning formulation for viscous flow computations // Computers and Fluids. 2011. V. 47. N 1. P. 1–15.
8.     Brodtkorb A.R., Hagen T.R., Satra M.L. Graphics processing unit (GPU) programming strategies and trends in GPU computing // Journal of Parallel and Distributed Computing. 2013. V. 73. N 1. P. 4–13.
9.     Cleary A.J., Falgout R.D., Henson V.E., Jones J.E., Manteuffel T.A., McCormick S.F., Miranda G.N., Ruge J.W. Robustness and scalability of algebraic multigrid // SIAM Journal on Scientific Computing. 2000. V. 21. N 5. P. 1886–1908.
10.Ruge J., Stuben K. Algebraic multigrid (AMG) / In:Multigrid Methods (Frontiers in Applied Mathematics) / Ed. S.F. McCormick. Philadelphia: SIAM, 1987. V. 3. P. 73–130.
11.Stuben K. A review of algebraic multigrid // Journal of Computational and Applied Mathematics. 2001. V. 128. N 1–2. P. 281–309.
12.Stuben K. An introduction to algebraic multigrid. In: Multigrid / Ed. U. Trottenberg, C. Oosterlee, A. Schuller. London: Academic Press, 2001. P. 413–532.
13.Yang U.M. Parallel algebraic multigrid methods – high performance preconditioners // Lecture Notes in Computational Science and Engineering. 2006. V. 51. P. 209–236.
14.Волков К.Н. Дискретизация уравнений Навье-Стокса на неструктурированной сетке при помощи метода контрольного объема и разностных схем повышенной разрешающей способности // Журнал вычислительной математики и математической физики. 2008. Т. 48. № 7. С. 1250–1273.
15.AGARD-AR-211: Test cases for inviscid flow field methods // Advisory Reports. 1986.
16.Suero R., Pinto M.A.V., Marchi C.H., Araki L.K., Alves A.C. Analysis of algebraic multigrid parameters for two-dimensional steady-state heat diffusion equations // Applied Mathematical Modelling. 2012. V. 36. N 7. P. 2996–3006.


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2024 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика